Altera provides three types of programming adapters for Altera devices PLM-prefix adapters, PLE-prefix adapters, and the PLAD3-12 compatibility adapter. Each adapter contains one of the following sockets a zero-insertion-force dual in-line package DIP , plastic or ceramic J-lead PLCC/JLCC , pin-grid array PGA , small-outline integrated circuit SOIC , or quad flat pack QFP . Most adapters for QFP devices with 100 or more pins support Altera’s QFP carriers. Adapters with an “NC” suffix program QFP devices that are not in a QFP carrier. Table 2 on page 680 lists the adapters required for each Altera device and package option.
Part | Datasheet |
---|---|
![]() |
PLMQ7192/256-160NC (pdf) |
Related Parts | Information |
---|---|
![]() |
PLMQ7128/160-160NC |
PDF Datasheet Preview |
---|
Altera Programming Hardware January 1998, ver. 4 Data Sheet Altera offers a variety of hardware to program and configure Altera devices. For conventional device programming, in-system programming, and in-circuit reconfiguration, designers can choose from the hardware options shown in Table 1 these options are described in more detail in subsequent sections. Table Available Hardware Options for Altera Device Programming & Configuration Conventional device programming In-system programming In-circuit reconfiguration External Programming Hardware, Note 1 BitBlaster Serial Download Cable ByteBlaster Parallel Download Cable Note 1 External programming hardware includes the Logic Programmer card and Master Programming Unit MPU . Altera devices are also supported by a variety of third-party programmers. Refer to Programming Hardware Manufacturers in this data book for more information. External Programming Hardware Altera provides the following external programming hardware: s Altera Stand-Alone Programmer s Logic Programmer card s Master Programming Unit s Programming adapters Altera Corporation A-DS-PRHW-04 Altera Programming Hardware Data Sheet Altera Stand-Alone Programmer The Altera Stand-Alone Programmer PL-ASAP2 , together with the appropriate programming adapters, provides the hardware and software needed for programming EPROM- and EEPROM-based devices, and for configuring SRAM-based devices. PL-ASAP2 includes an LP6 Logic Programmer card, an MPU, II Programmer software which requires Microsoft Windows 3.x, Windows 95, or Windows NT , and complete documentation. The MAX+PLUS II Programmer supports device configuration for 10K, FLEX 8000, and FLEX 6000 devices, and device programming for 9000, MAX 7000, MAX 5000, Classic , and Configuration EPROM devices. Ordering Code: PL-ASAP2 Logic Programmer Card The LP6 Logic Programmer card generates programming waveforms and voltages for the MPU. The software-controlled card can be installed into any full-length computer expansion slot in an IBM PC or compatible computer. The LP6 card is available as part of PL-ASAP2 or individually. Ordering Code: PLP6 Master Programming Unit The MPU is a hardware module that is used together with an appropriate adapter to program Altera devices. The MPU connects to a Logic Programmer card via a 25-pin ribbon cable. The MPU receives power from the Logic Programmer card and does not require an external power supply. Programming and functional test information is transmitted from the Logic Programmer card through the ribbon cable to the MPU. A programming status light on the MPU lights up when the unit is active. When used with the appropriate adapter, the MPU automatically tests for continuity between the device leads and the programming socket before programming. It can also apply test vectors to functionally test and verify programmed Altera devices. Test vectors can be created in waveform or text format in the MAX+PLUS II Waveform Editor or Text Editor and applied to the device results can be viewed in waveform or text format. The MPU is available as part of the PL-ASAP2 or individually. Ordering Code: PL-MPU Altera Corporation Altera Programming Hardware Data Sheet Programming Adapters Altera provides three types of programming adapters for Altera devices PLM-prefix adapters, PLE-prefix adapters, and the PLAD3-12 compatibility adapter. Each adapter contains one of the following sockets a zero-insertion-force dual in-line package DIP , plastic or ceramic J-lead PLCC/JLCC , pin-grid array PGA , small-outline integrated circuit SOIC , or quad flat pack QFP . Most adapters for QFP devices with 100 or more pins support Altera’s QFP carriers. Adapters with an “NC” suffix program QFP devices that are not in a QFP carrier. Table 2 on page 680 lists the adapters required for each Altera device and package option. See the QFP Carrier & Development Socket Data Sheet in this data book for more information. Adapters The PLM-prefix adapters plug directly into the MPU. Each adapter provides programming support for a specific device package. Additionally, PLM-prefix adapters except the PLMJ1213 and PLMT1064 support functional testing of programmed Altera devices. The PLMJ1213 and PLMT1064 adapters can program the Configuration EPROMs used to configure FLEX 10K, FLEX 8000, and FLEX 6000 devices. Adapters The PLE-prefix adapters plug into the PLAD3-12 compatibility adapter, which in turn plugs into the MPU. Each PLE-prefix adapter provides programming support for a specific Classic device. PLAD3-12 Compatibility Adapter The PLAD3-12 compatibility adapter plugs directly into the MPU. This adapter allows PLE-prefix adapters to be used with the MPU. See Table Altera Corporation Altera Programming Hardware Data Sheet Table Programming Adapters & Hardware Support Part 1 of 3 Note 1 Device FLEX 10K FLEX 8000 FLEX 6000 EPC1 EPC1441 EPC1213 EPC1064 EPC1064V EPM9320 EPM9320A EPM9400 EPM9400A EPM9480 EPM9480A EPM9560 EPM9560A EPM7032 EPM7032V EPM7032S EPM7032A Package Adapter All packages All packages All packages DIP J-Lead DIP J-lead TQFP DIP J-lead DIP J-lead TQFP J-lead 84-pin RQFP 208-pin RQFP 240-pin J-lead 84-pin RQFP 208-pin RQFP 240-pin RQFP 208-pin RQFP 240-pin RQFP 208-pin RQFP 240-pin PGA 280-pin RQFP 304-pin BGA 356-pin J-lead PQFP TQFP Note 2 Note 2 Note 2 PLMJ1213 PLMJ1213 PLMT1064 PLMJ1213 PLMJ1213 PLMT1064 PLMJ9320-84 PLMR9000-208 PLMR9000-208NC PLMR9000-280 Ordering Codes PLExxxx, PLMxxxx, PLAD3-12 The BitBlaster serial download cable is a hardware interface to a standard PC or UNIX workstation RS-232 port known as a “COM port” on a PC and a “ttya port” or “ttyb port” on a UNIX workstation that provides configuration data to FLEX 10K, FLEX 8000, and FLEX 6000 devices and programming data to MAX 9000, MAX 7000S, and MAX 7000A devices. Altera Corporation ByteBlaster Parallel Download Cable Altera Programming Hardware Data Sheet The 25-pin female port on the BitBlaster download cable connects to an RS-232 port with a standard serial cable. The 10-pin female plug on the BitBlaster download cable connects to a device on a circuit board via a 10-pin male header. The BitBlaster cable contains status lights that indicate the state of the device configuration or programming. Refer to the BitBlaster Serial Download Cable Data Sheet in this data book for more information. Ordering Code: PL-BITBLASTER To configure/program 3.3-V devices e.g., FLEX 10KA and MAX 7000A devices , using a BitBlaster download cable, connect the cable’s VCC pin to a 5.0-V power supply and the device to a 3.3-V power supply. FLEX 10KA and MAX 7000A devices have 5.0-V tolerant inputs, so the download cable’s 5.0-V output will not harm these 3.3-V devices. The pull-up resistors should be connected to the 5.0-V power supply. The ByteBlaster parallel download cable is a hardware interface to a standard parallel port also known as an LPT port . This cable channels configuration data to FLEX 10K, FLEX 8000, and FLEX 6000 devices as well as programming data to MAX 9000, MAX 7000S, and MAX 7000A devices. The ByteBlaster download cable has a 25-pin male header that connects to the PC parallel port, and a 10-pin female plug that connects to the circuit board. Data is downloaded from the PC’s parallel port through the ByteBlaster to the circuit board. The ByteBlaster 10-pin plug is identical to the BitBlaster 10-pin plug. Refer to the ByteBlaster Parallel Port Download Cable Data Sheet in this data book for more information. Ordering Code: PL-BYTEBLASTER To configure/program 3.3-V devices e.g., FLEX 10KA and MAX 7000A devices , using a ByteBlaster download cable, connect the cable’s VCC pin to a 5.0-V power supply and the device to a 3.3-V power supply. FLEX 10KA and MAX 7000A devices have 5.0-V tolerant inputs, so the download cable’s 5.0-V output will not harm these 3.3-V devices. The pull-up resistors should be connected to the 5.0-V power supply. Altera Corporation Altera Programming Hardware Data Sheet Programming Techniques Table 3 summarizes programming/configuration techniques. Table Programming/Configuration Techniques by Device Family Device Family Programming/Configuration Techniques FLEX 10K, Note 1 Download configuration data via the BitBlaster or ByteBlaster download cables, or an embedded microprocessor using the JTAG ports. FLEX 10K, FLEX 8000, or In passive serial PS mode, download configuration data via the BitBlaster or FLEX 6000 ByteBlaster download cables. Configure devices via an on-board microcontroller. FLEX 10K and FLEX 6000 Configure devices via an EPC1 or EPC1441 Configuration EPROM. FLEX 8000 Configure devices via an EPC1, EPC1441, EPC1213, EPC1064, or EPC1064V Configuration EPROM. MAX 9000, MAX 7000S, Program devices in-system via the BitBlaster or ByteBlaster and the JTAG ports. and MAX 7000A, Note 1 Program devices via the MPU and the LP6 card and the appropriate adapters. Program devices via third-party programming hardware. Program devices in-system via in-circuit test ICT equipment or an on-board microcontroller. MAX 7000 Program using the MPU and the LP6 card and the appropriate adapters. MAX 5000 Classic Program using third-party programming hardware. Note 1 To configure or program 3.3-V devices e.g., FLEX 10KA and MAX 7000A devices using a BitBlaster or ByteBlaster download cable, connect the cable’s VCC pin to a 5.0-V power supply and the device to a 3.3-V power supply. FLEX 10KA and MAX 7000A devices have 5.0-V tolerant inputs, so the download cable’s 5.0-V output will not harm these 3.0-V devices. The pull-up resistors should be connected to the 5.0-V power supply. Altera Corporation Copyright 1995, 1996, 1997, 1998, 1999 Altera Corporation, 101 Innovation Drive, San Jose, CA 95134, USA, all rights reserved. By accessing this information, you agree to be bound by the terms of Altera’s Legal Notice. |
More datasheets: AT25FS040N-SH27-T | DC-DTS-B100 | FDMC8678S | BCM8727CIFBG | AS35 5R025 | 10140 | ACPM-9417-BLK | ACPM-9417-TR2 | ACPM-9317-TR1 | ACPM-9317-BLK |
Notice: we do not provide any warranties that information, datasheets, application notes, circuit diagrams, or software stored on this website are up-to-date or error free. The archived PLMQ7192/256-160NC Datasheet file may be downloaded here without warranties.