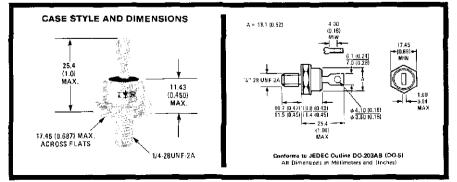
Data Sheet No. PD-2.092

IRD3899, IRD3909 SERIES

20 and 30 Amp Fast Recovery Rectifier Diodes

			IRD3909 - IRD3913	i
IF(AV)		20	30	A
@ Max. T _C		100	100	°C –
IFSM	50Hz	240	285	A
	60Hz	260	300	A
l ² t	60Hz	285	410	A ² :
	60Hz	260	375	A ² s
l ¹ √t		4050	6810	A^{1} , s
t _{rr range}		see t	ris -	
VRRM ra	nge	50-	۷	
[⊤] J range		40 t	٥C	


Major Ratings and Characteristics

Description

This range of fast recovery diodes is designed for applications in DC power supplies, inverters, *choppers*, ultrasonic systems and for use as a free-wheeling diode.

Features

- Short reverse recovery time
- Low stored charge
- Wide current range
- Excellent surge capabilities
- Stud cathode and stud anode versions

Document Number: 93162

www.vishay.com

INTERNATIONAL RECTIFIER

IRD3899, IRD3909 Series

ELECTRICAL SPECIFICATIONS

Reverse voltage ratings

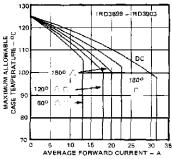
	¹ VRRM, Maximum peak	VRSM, Maximum peak	iRM, Maximum peak reverse current			
Part number 🛈	repetitive reverse voltage T j≈ -40 to 125°C	non-repetitive reverse voltage: Tij = 25 to 125°C	Tj = 25° C	ut rated V _{RRM} T _J = 100°C	[† = 1 _{R(AV)} T _J = 125°C	
	1 - v	v	mA	mA	mA	
1 A D 3899	50	75	0.05	6.0	10.01	
RD3900	100	160	0.05	6.0	10.0f	
IRD3901	200	250	0.05	6.0	10.01	
1603802	300	350	0.05	6.0	10.01	
RD3903	400	460	0.05	6.0	10.01	
IRD 3908	50	75	30.0	10.0	15.01	
IRD3910	100	150	0.0B	10.0	15.0t	
IRD3911	200	250	0.08	10.0	15.0t	
IRD3912	200	360	0.08	10.0	15.01	
RD3913	400	450	0.08	10.0	15.01	

Types listed are cathods case, for anode case, add "R" to code, i.e. IRD3899A etc.

Reverse recovery characteristics

	- IRD 3899 - IRD 3803	IR0 3909 - IR0 3913	Units.	Conditions
t _{er} Maximum reverse recovery time	200	200	ns	$T_J = 25^{\circ}$ C, $I_F = 1$ A to $V_H = 30V = dI_{F/dt} = 100$ A///s
	350	360	ns	$T_J = 25^{\circ}C_{*} - dI_{F/dt} = 25A/4s I_{FM} - \pi x$ rated $I_{F}(AV)$
Q _{RE} Maximum reverse recovered change	300	800	лС	$T_{d} = 25^{\circ}C$, i.e. = 1A to $V_{R} = 30V - di_{F/dt} = 100A/\mu$ s
	1000	1000	n¢.	$T_{\rm J} = 25^{\circ}$ C, $-o_{\rm F/dt} = 25$ A/(15 $I_{\rm PM} = 27 \times rated I_{\rm F(AV)}$

Forward conduction


		IR D3899 	HRD3909 - IRD3913	Units	Conditions		
F(AV)	Maximum average forward current	20	30	4	180° conduction , half sine wave $-T_{\hat{C}}=100^\circ C_1$		
IF(RMS)	Maximum rms forward current	31	47	A			
FSM	Maximum peek, one cycle non-repetitive forward current	240	285	Α	t = 10me	Sinusoidel half wave, 100% V R BM	
		250	300	A	t = 8.3ms	reapplied, initial T _J = 125° C	
		285	340	A	r = 10me	Sigusoidal half wave, no voltage reappi	
		295	355	A	t = 8.3ms	initial T_ = 125° C	
l²t	Maximum I ² t for fusing	285	410	A ² s	t = 10ms	100% V _{RRM} reapplied, initial	
		260	375	A ² s	t - 8.3ms	T - 125°C	
	Maximum (² t, for Individual device fusing.	405	560	A ² 5	t = 70ms	No voltage reapplied, initial	
		370	530	A ² s	τ=8.3ms	T ₃ = 125°C	
²√t	Maximum I $^2\sqrt{\tau}$ for , ind, device fusing \circledast	4050	5810	A²√s	t = 0.1 - 10ms, he voltage reapplied		
VFM	Maximum peak torward voltage	1.65	1.80	v	T」= 25°C, I _{FM} ≈ π × rated I _{FtAVI}		

(1) $I^2 t$ for time $t_x = I^2 \sqrt{t} = \sqrt{\tau_x}$.

IOR INTERNATIONAL RECTIFIER

THERMAL AND MECHANICAL SPECIFICATIONS

			IRD3899 IRD3903	IR03909 +RD3913	Units	; Conditions		
T,	T _J Junction operating temperature range		-40 to 125		°C			
Tsta	Storage temperature range		- 40 to 150		۰C			
RthuC	Maximum internal therma junction to case	n resistance,	0.6	0.46	deg C/W	DC operation		
RthCS	Maximum thermal resista heatsink	nce case to	0.25		0.25		cag C/W	Mounting surface flat, smooth and grease
T	Mounting torque ± 10%	το πυτ	20	20 (27) Ibl.ie		Lubriosted threads (non-ubricated threads)		
			0.23 (0.29)		kgf.m			
			2.2 (2.7)		Nm			
		to device	22		lbf,in			
					kgr.m.			
			2.5		Nm			
wt	Approximate weight		2	5	4	· · · · · · · · · · · · · · · · · · ·		
			0.88		50			
	Case style		DO-203A	8 (DO-5)		JEDEC		

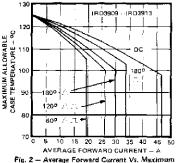


Fig. 2 — Average Forward Current Vs. Maximum Allowable Case Temperature, IRD3909 Series

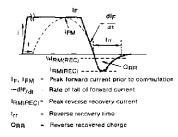


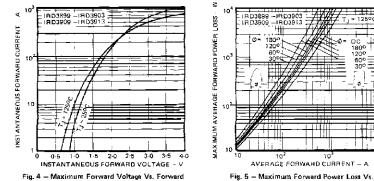
Fig. 3 - Reverse Recovery Time Test Waveform

IRD3809, IRD3909 Series

INTERNATIONAL RECTIFIER

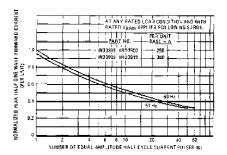
- 125°C

DC


1800

200 60° 30°

đ


10

- A

Current, Both Series

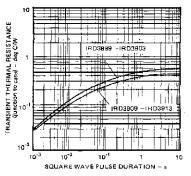


Fig. 7 - Maximum Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration, Both Series

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.