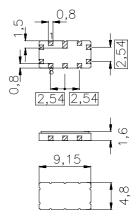


SAW Components

Data Sheet B3817

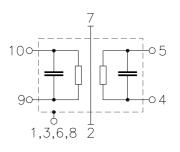
SAW Components	B3817
Low-Loss Filter	208,0 MHz
Data Sheet	


Ceramic package QCC10B

FeaturesIF low-loss filter for W-CDMA base station

- Temperature stable
- Usable bandwidth 3,84 MHz
- Ceramic SMD package

Terminals


• Gold plated

Dimensions in mm, appr. weight 0,23 g

Pin configuration

10	Input
9	Input ground
5, 4	Balanced output
1, 3, 6, 8	Case ground
2, 7	To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B3817	B39211-B3817-Z710	C61157-A7-A49	F61074-V8172-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	-40 / +85	°C
Storage temperature range	T _{stq}	-40 / +85	°C
DC voltage	V _{DC}	0	V
Source power	Ps	0	dBm

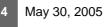
2

SAW Components	B3817
Low-Loss Filter	208,0 MHz
Data Sheet	

Characteristics

		min.	typ.	max.	
Nominal frequency	f _N	—	208,0	—	MHz
Minimum insertion attenuation(including matching network) $f_N \pm 1,92$ MHz	$lpha_{min}$	_	11,7	13,0	dB
Passband width					
$\alpha_{rel} \leq 1 \text{ dB}$	B _{1dB}		4,2	_	MHz
Amplitude ripple (p-p) $f_{\rm N} \pm 1,92 \; {\rm MHz}$	Δα	_	0,7	1,0	dB
Phase ripple (p-p) $f_{\rm N} \pm$ 1,92 MHz	Δφ	_	7	10	o
Phase ripple (rms) $f_{\rm N} \pm$ 1,92 MHz	Δφ	_	1,1	—	° rms
Absolute group delay mean value within $f_{\rm N}$ \pm 1,92 MHz	τ _{mean}	790	795	800	ns
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	α _{rel}	9 15 20 25 30 40 55 40	10 20 30 30 35 50 60		dB dB dB dB dB dB dB
Temperature coefficient of frequency ¹⁾ Turnover temperature	TC _f T ₀		- 0,036 25		ppm/K ² °C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

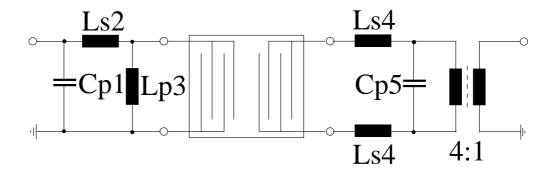

SAW Components
Low-Loss Filter

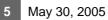
B3817 208,0 MHz

Data Sheet

Operating temperature range: Terminating source impedance: Terminating load impedance:	Z _S		and matc	hing networ ching netwo		
	-L	200	min.	typ.	max.	
Nominal frequency		f _N		208,0	_	MHz
Minimum insertion attenuation (including matching network)	$f_{\rm N}$ ± 1,92 MHz	$lpha_{min}$	_	11,7	13,5	dB
Passband width	$\alpha_{rel} \le 1 \text{ dB}$	B _{1dB}	_	4,2		MHz
Amplitude ripple (p-p)	<i>f</i> _N ± 1,92 MHz	Δα	_	0,7	1,0	dB
Phase ripple (p-p)	^ε _N ± 1,92 MHz	Δφ	_	7	10	o
Phase ripple (rms)	[€] N ± 1,92 MHz	Δφ	_	1,1	_	° rms
Absolute group delay mean value withinf _N ±1	,92 MHz	τ _{mean}	790	795	800	ns
$\begin{array}{rcl} \mbox{Relative attenuation} \mbox{ (relative to} & f_{N} ~\pm~ 2,53 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 2,70 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 2,75 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 2,90 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 2,90 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 3,30 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 10 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 10 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 28 ~\mbox{MHz} ~~ ~~ f_{N} & f_{N} ~\pm~ 28 ~\mbox{MHz} ~~ ~~ f_{N} & \mbox{MHz} ~~ ~~ f_{N} & \\mbox{MHz} ~~ ~~ f_{N} & \\\mbox{MHz} ~~ ~~ f_{N} & \\\\mbox{MHz} ~~ ~~ f_{N} & \\\mbox{MHz} ~~ ~~ f_{N} & \\\\mbox{MHz} ~~ ~~ f_{N} & \\\\mb$	 ± 2,70 MHz ± 2,75 MHz ± 2,90 MHz ± 3,30 MHz ± 10 MHz ± 28 MHz 	α _{rel}	8 15 20 25 30 40 55 40	10 20 30 30 35 50 60	 	dB dB dB dB dB dB dB
- 		TC		- 0,036		ppm/K
Temperature coefficient of free Turnover temperature	luency	TC _f T ₀	_	- 0,036 25	_	°C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

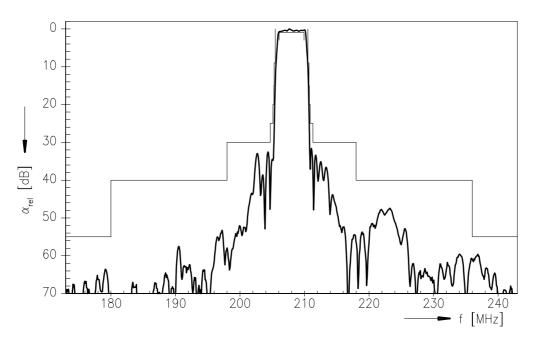


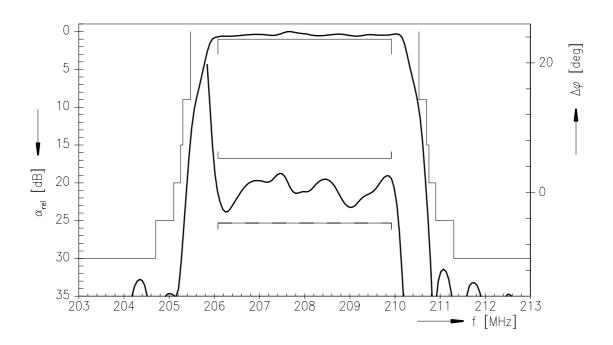

SAW Components	B3817
Low-Loss Filter	208,0 MHz

Data Sheet

Matching network (element values depend on PCB layout):

C _{p1} = 39 pF	L _{p3} = 390 nH	C _{p5} = 22 pF
L _{s2} = 68 nH	L _{s4} = 47 nH	




SAW Components	B3817
Low-Loss Filter	208,0 MHz

Data Sheet

Transfer function

Transfer function (pass band)

6

SAW Components	B3817
Low-Loss Filter	208,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

