To: Digi-Key	Issue No. :	ECJ05120904
	Date of Issue :	December 09.2005
	Classification :	■ New □ Changed □

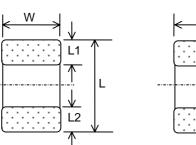
PRODUCT SPECIFICATION FOR APPROVAL

Product Description	:	Multilayer Ceramic Chip Capacitors
Product Part Number	:	ECJ1VBFJ225K (0603/X5R/6.3V/2.2uF)

Customers Part Number	:	
Country of Origin	:	Japan
Applications	:	

XIf you approve this specification, please fill in and sign the below and return 1copy to us.

Approval No	:		
Approval Date	:		
Excecuted by	:		
	-	(signature)	
Title	-	(signature)	
Title Dept.	- : :	(signature)	


	Prepared by	: Engineering Section	
Capacitor Business Unit	Phone :	+81-123-22-8758	(Direct)
Panasonic Electronic Devices Co., Ltd.	Fax :	+81-123-22-1261	(Direct)
25.Kohata-nishinakaUji City , Kyoto, Japan	Contact Person Title	: T. S. Li : Engineer	m
Phone : +81-774-31-5818(Representative)		(4/	
Fax : +81-774-33-4251	Authorized by	: J. 7060	guch
	Title :	Mayager of Engineer	ing
If there is a question, please ask the engineering sec	ction about it di	irectly Panas	onic

CLASSIFICAT	ION SPECIFICATIONS	No. 151S-ECJ-KCM78E
SUBJECT	Multilayer Ceramic Chip Capacitors 11type (EIA 0603)	PAGE 1 of 1
High	Capacitance (P/N : ECJ1VBFJ225K) Individual Specification	DATE Dec 9, 2005

1. Scope

This specification applies to High Capacitance Multilayer Ceramic Chip Capacitor 11 type (EIA 0603), Temp. Char:X5R, Rated voltage DC6.3V, Nominal Capacitance 2.2μ F.

2. Style and Dimensions

Table 1		
Symbol Dimensions(mm)		
L	1.60 +/- 0.15	
W	0.80 +/- 0.15	
Т	0.80 +/- 0.15	
L1,L2	0.3 +/- 0.2	

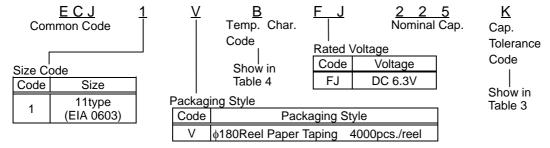

3. Operating Temperature Range

Table 2		
	Temperature Characteristics	Operating Temp. Range.
Class2	X5R	-55 to +85 °C

4. Individual Specification

Part Number	Rated Voltage	Temp. Char.	Nominal Capacitance	Cap. Tolerance
ECJ1VBFJ225K	DC 6.3V	X5R	2.2 μF	+/-10 %

5. Explanation of Part Numbers

6. Temperature Characteristics

Temp. Char.	Capacitance Change rate from Temperature		Measurement	Reference
Code	Temp. Char. Without voltage application		Temperature Range	Temperature
В	X5R	+/-15 %	-55 to +85 °C	+25 °C

7. Soldering method

Flow soldering shall not be applied.

NIAto	
note	
	,

	APPROVAL	CHECK	DESIGN
Panasonic Electronic Devices Co., Ltd.	Y.Sakaguchi	S. Endoh	T.Shinriki

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-KGM78E
SUBJECT Multilayer	Ceramic Chip Capacitors11type (EIA 0603)	PAGE 1 of 7
High Capacitan	ce (P/N : ECJ1VBFJ225K) Common Specification	DATE Dec 9, 2005
 parts and material (2) PBB and PBDE a (3) All the materials u lation of Manufact (4) This product comp ous Substances in (5) This product is ex Exchange and Fo 1- 2.Limitation in Application This product was des 	ns igned and manufactured for general-purpose electronic equipr	cerning Examination and Regu- n of the use of certain Hazard- egulations such as the Foreign ment such as household, office,
safety because the tr separate specificatior • Aerospace / Aircr	nication equipment. When the following applications, which ar ouble or malfunction of this product may threaten the lives ar s suitable for the application should be exchanged. aft equipment, Warning / Antitheft equipment, Medical equipme Ship and Vessel), Highly public information processing equip	nd/or properties, are examined, ent, Transport equipment (Motor
1- 3.Production factory (1) Panasonic Electro	nic Devices Hokkaido Co., Ltd.	

- (2) Panasonic Electronic Devices (Tianjin) Co., Ltd. (PEDTJ)
- (3) Matsushita Electronic Devices (M) Sdn. Bhd.(MEDEM)

2. Scope

- 2- 1. This specification applies to High Capacitance Multilayer Ceramic Chip Capacitor 11type (P/N : ECJ1VBFJ225K). If there is a difference between this common specification and any individual specifications, priority shall be given to the individual specifications.
- 2- 2. This product shall be used for general-purpose electronic equipment such as audiovisual, household, office, information & communication equipment.

Unreasonable applications may accelerate performance deterioration or short/open circuits as failure modes affecting the life end.

Adequate safety shall be ensured especially for product design required a high level of safety with the following considerations.

- 1)Previously examine how a single trouble in this product affects the end product.
- 2)Design a protection circuit as Failsafe-design to avoid unsafe system resulting from a single trouble with this product.

Whenever a doubt about safety arises from this product, immediately inform us for technical consultation without fail, please.

- 2- 3. This specification is a part of contract documents pertaining to the trade made by and between your company and Matsushita Electric Industrial Co., Ltd.
- 3. Part Number Code

	0000					
ECJ	1	V	В	FJ	225	K
(1)	(2)	(3)	(4)	(5)	(6)	(7)

3-1.Common Code (1)

ECJ : Multilayer Ceramic Chip Capacitors

3- 2.Size (2), Packaging Styles (3), Temperature Characteristic (4), Rated Voltage (5), Capacitance Tolerance (7): Shown in Individual Specification.

Note ;

	APPROVAL	CHECK	DESIGN
Panasonic Electronic Devices Co., Ltd.	Y.Sakaguchi	S.Endoh	T.Shinriki

CLASSIFICAT	ION	SPECIFICA	TIONS				No. 151S-ECJ-KGM7	78E
SUBJECT	Multilave	r Ceramic Chip Capa	citors1	Itype (EIA 060)3)		PAGE 2 of 7	
High	•	nce (P/N : ECJ1VBFJ		•• •		۱	DATE Dec 9, 200	
3- 3.Nominal	Canacitance	(6)						
		tance value is expressed i	in pico fa	rads(pF) and is	Symbol	(Ex.)	Nominal Cap.	
identifie	d by a three-	digit number ; the first two	digit		105		1000000pF(1µF)	-
represe zero to f		figures and the last digit	specifies	the number of	106	6	1000000pF(10µF)	
2010101	UIUW.				226	6	22000000pF(22μF)	
4. Operating T Shown in In	emperature l dividual Spe							
5- 1.Pretreatr	nance of the nent	capacitor and its test cond surements, the following p		-		necessa	ary.	
	acitors shall	be kept in a temperature urs, before initial measure		0/-10°C for 1 ho	ur and th	en shal	I be stored in a room te	:m-
D.C. vol		t applied for 1 hour in the s fore initial measurement.	specified	test condition and	d then sha	all be st	ored in a room temperati	ure
humidity of	45 to 75%.	ed, all test and measurer pubted a further test shoul						
7. Structure The structur	re shall be in	a monolithic form as show	wn in Fig.	1.				
			Fig. 1	Table 1				
			C		No.		Name	
	\square				1	Dielec	tric	
					2		electrode	
					3		ate electrode	
	-{(///		0		(4) (5)		ediate electrode al electrode	
) -(5)				
-								
Note ;								

CLASSIFICATION

SPECIFICATIONS

No. 151S-ECJ-KGM78E PAGE 3 of 7

SUBJECT Multilayer Ceramic Chip Capacitors11type (EIA 0603) High Capacitance (P/N : ECJ1VBFJ225K) Common Specification

DATE Dec 9, 2005

			Table 2					
No	Content	s	Performance			Test I	Method	
1	Appearance		There shall be no defects which affect the life and use.	With a n	nagnifyin	ıg glas	s (3 times).	
2	Dimensions		Shown in Individual Specification.	With slic	de calipe	rs and	a micromete	er.
3	Dielectric Wit ing voltage	thstand-	There shall be no dielectric breakdown or damage.	Apply a seconds	DC volta 3.	ige of t	rated voltage he above va ent shall be v	lue for 1 t
4	Insulation Resistance(I.R)	100/C M Ω min. (C : Nominal Cap. in μ F)	Measuri	ng volta	ge time	ated voltage e : 60+/-5s ent shall be v	vithin 50n
5	Capacitance		Shall be within the specified tolerance.	Moor	suring	M	easuring	
6	Dissipation Factor (tan δ)	otor	0.15 max.	Freq	uency +/-10%	`	Voltage +/-0.2Vrms	
				treatmer Our Me Table 3.	nt in par. asureme	5-1-1. ent inst	trument is s	hown in t
7	Temperature Without Coefficient Voltage Appli- cation		Temp. Char. X5R: Within +/- 15%	changin to 4 sh rate of	g the ten own in t	nperati he tat regare	ance at eac ure in the ord ble below. C ding the cap ce.	der of ste alculate
				Temp.			Stage	(01111)
				Char.	1	2		4 5
				X5R	25+/-2	-55+/-:	3 25+/-2 85	+/-2 25+
				M	leasuring) /	Measuri Voltage	ng Ə
					Hz+/-10		0.50+/-0.05	
8	Adhesion		The terminal electrode shall be free from peeling or signs of peeling.	the figu		apply	o the testing a 5N force s.	in the arr
					: Alumir epoxy ss : 1.0n	board	rd (95% min. 1.) or glass
			(continue)					

CLASSIFICATION

SPECIFICATIONS

No. 151S-ECJ-KGM78E PAGE

4 of 7

SUBJECT Multilayer Ceramic Chip Capacitors11type (EIA 0603)

High Capacitance (P/N : ECJ1VBFJ225K) Common Specification

DATE Dec 9, 2005

				Table 2	
No	Contei	nts		Performance	Test Method
9 Bending Ap		Appear- ance		shall be no cracks and other nical damage.	After soldering capacitor on the substrate 1mm of bending shall be applied for 5 seconds. Bending speed : 1mm/s
12		Capaci- tance	Temp. Char. X5R	Change from the value before test. Within +/- 12.5%	(shown in Fig. 3)
10	Vibration Proof	Appear- ance Capaci- tance tan δ	mechan Shall be	hall be no cracks and other nical damage. e within the specified tolerance. eet the specified initial value.	Solder the specimen to the testing jig shown in Fig. 2. Apply a variable vibration of 1.5mm total amplitude in the 10 to 55 to10Hz vibration frequency range swept in 1 min. in 3 mutually perpendicular directions for 2 hours each, a total of 6 hours.
11	Resistance to Solder			hall be no cracks and other	Solder both method Preconditioning : Heat Temperature
	Heat	Capaci- tance	Temp. Char. X5R	Change from the value before test. Within +/- 7.5%	Solder temperature : 270+/-5°C Dipping period : 3+/-0.5s Preheat condition :
		tan δ		eet the specified initial value.	Order Temp.(°C) Period(s)
		I.R.		eet the specified initial value.	1 80 to 100 120 to 180 2 150 to 200 120 to 180
		With- stand voltage	There s or dama	hall be no dielectric breakdown age.	Use solder H63A(JIS-Z-3282).For the flux, use rosin (JIS-K-5902) ethanol solution of a concentration of about 25% by weight. Use tweezers for the holder to dip the specimen. Recovery : 48+/-4 hours
12 Solderability		More than 95% of the soldered area of both terminal electrodes shall be covered with fresh solder.		f Solder temperature : 230+/-5°C Dipping period : 4+/-1s Dip the specimen in solder so that both terminal electrodes are completely submerged Use solder H63A(JIS-Z-3282). For the flux use rosin (JIS-K-5902) of ethanol solution of a concentration of about 25% by weight. Use tweezers for the holder to dip the specimen.	
				(continue)	

Note;

CLASSIFICATION

SUBJECT

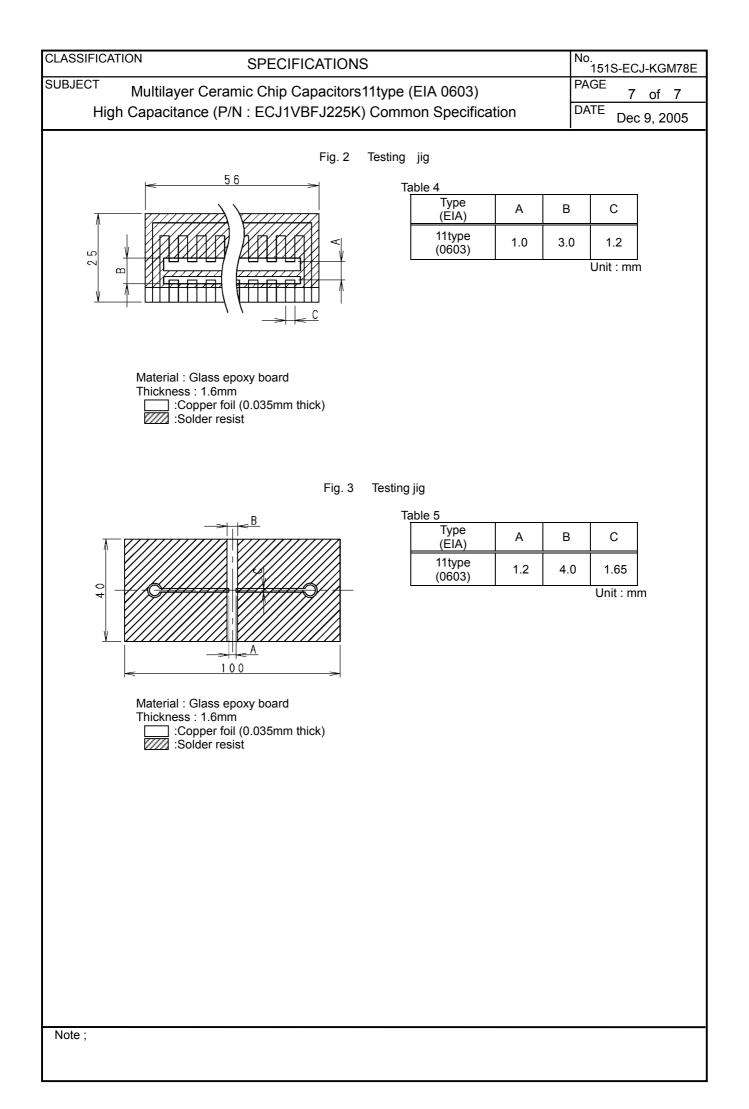
SPECIFICATIONS

No. 151S-	-EC	J-KG	M78E	=
PAGE	5	of	7	

^{CT} Multilayer Ceramic Chip Capacitors11type (EIA 0603) High Capacitance (P/N : ECJ1VBFJ225K) Common Specification

			•	Table 2	-			
No	Conter	nts	Performance		Test Method			
13	Temperature cycle	Appear- ance		shall be no cracks and other nical damage.	Solder the specimen to the testing jig shown in Fig. 2. Condition the specimen to each			
		Capaci- tance	Temp. Char. X5R	Change from the value before test. Within +/- 7.5%	temperature from step 1 to 4 in this order the period shown in the table below. Re- ing this conditioning as one cycle, perfor 5 cycles continuously.			
		tan δ	Shall m	eet the specified initial value.		-	- · ·	
		I.R.		eet the specified initial value.	Step	Temperature (°C)	Period (min.)	
		With- stand	There s or dama	hall be no dielectric breakdown age.	1	Minimum operation temperature +/- 3	30+/-3	
		voltage			2	Room temperature	3 max.	
					3	Maximum operation temperature +/-5	30+/-3	
					4	Room temperature	3 max.	
					treatme Before t specime temper	class2 capacitors, perform nt in par. 5-1-1. he measurement after tea en shall be left to stand at rature for the following pe	st, the room	
14	Moisture Resistance	Appear- ance		shall be no cracks and other nical damage.	treatme	-4 II class2 capacitors, perform the heat nt in par. 5-1-1. he specimen to the testing jig show		
		Capaci- tance	Temp.Change from the valuein Fig. 2.Char.before test.				ig jig shown	
		tan δ	X5R 0.25 ma	Within +/- 20%	Relative humidity : 90 to 95% Test period : 500+24/0 h			
			0.20 m	an.				
	I.R.		10/C M (C : No	Ω min. minal Cap. in μF)	cimen s	he measurement after te hall be left to stand at roc the following period : -4 h		
15	Moisture Resistant Loading	Appear- ance		shall be no cracks and other nical damage.	treatme	class2 capacitors, perforn nt in par. 5-1-2. he specimen to the testin		
	5	Capaci- tance	Temp. Char.	Change from the value before test.	in Fig. 2.		010	
			X5R	Within +/- 20%		emperature : 40+/-2°C		
		tan δ	0.25 m	ax.		ive humidity : 90 to 95% ed voltage : Rated voltage		
	I.R. 5/C M Ω min. (C : Nominal Cap. in μ F)				(DC Voltage) ge/discharge current : with period : 500+24/0 h			
					cimen s	he measurement after te hall be left to stand at roc the following period : -4 h		
		1	1	(continue)				

Note;


CLASSIFICATION				SPECIFICATIONS			No. 151S-ECJ-KGM78E
S	SUBJE	ECT Multi	layer Cer	amic C	hip Capacitors11type (EIA	0603)	PAGE 6 of 7
		High Capa	citance (I	P/N : E0	CJ1VBFJ225K) Common S	Specification	DATE Dec 9, 2005
				-	Table 2		
	No	Contents		Contents Performance		Test M	ethod
	16 High Tem- perature Resistant		S S		For the class2 capacitors, perform the voltage treatment in par. 5-1-2. Solder the specimen to the testing jig shown		
		Loading	Capaci- tance	Temp. Char. X5R	Change from the value be- fore test. Within +/- 20%	in Fig. 2. Test temperature :	
				Applied voltage : Rat			
			I.R.	10/C M (C : No	Ω min. minal Cap. in μF)	(DC) Charge/discharge cu Test period : 1000+4	
						Before the measureme cimen shall be left to st	

When uncertainty occurs in the weather resistance characteristic tests (temperature cycle, moisture resistance, moisture resistant loading, high temperature resistant loading), the same tests shall be performed for the capacitor itself.

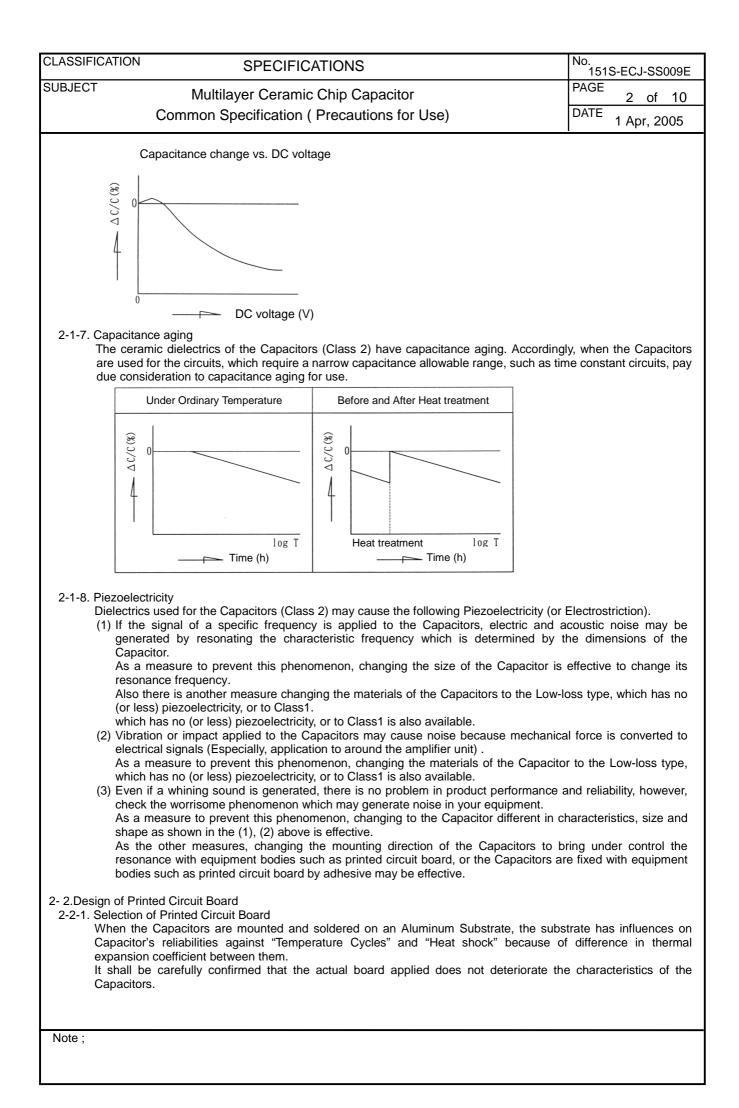
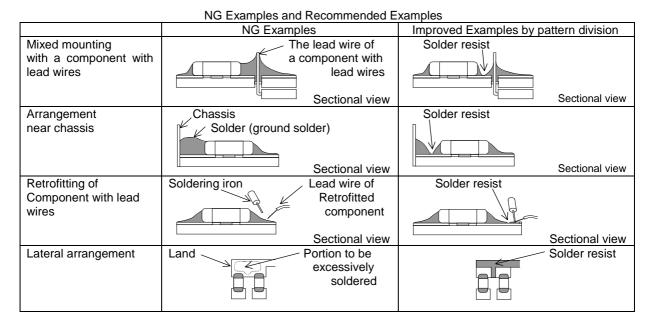

ture for the following period : 48+/-4 h

	Table 3
	Our Standard Measuring Instrument
Measuring Instrument	4284A Precision LCR Meter (Agilent Technologies)
Measuring Mode	Parallel Mode
Recommended Measuring Jig	16034e Test Fixture (Agilent Technologies)

For High Cap Type, signal voltage may be unable to be applied to depending on conditions of measuring instruments. We would appreciate it if you would confirm whether High Cap Type is under the measurable environment or not by checking that the fixed signal voltage is applied or not. (For example, ALC function is ON, HPA is expanded.)

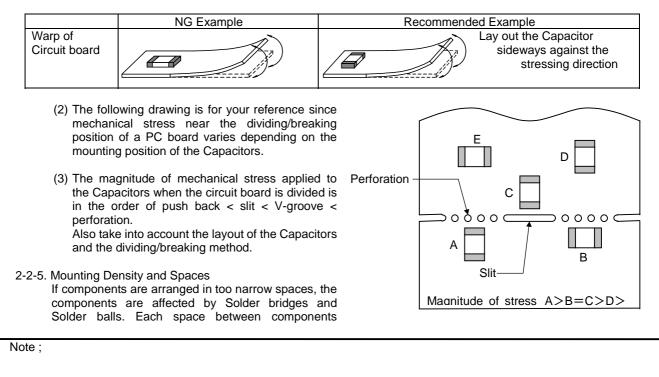
CLASSI	IFICATION	SPECIFICATIONS		No. 151S-E	CJ-SS009E	
SUBJEC	ст	Multilayer Ceramic Chip Capacitor		PAGE	1 of 10	
		Common Specification (Precautions for Use)			Apr, 2005	
À	open-circuit beyond the glowing in the The followin major consi	yer Ceramic Chip Capacitors (hereafter referred to as "Capacitor t mode when subjected to severe conditions of electrical, en e specified "Rating and specified "Conditions" in the Specifica the worst case. ng "Operating Conditions and Circuit Design" and "Precautions	nvironmental a ations, resulting ns for Assembly	a short circuit nd/or mecha g in burn out y" shall be ta	t mode in an inical stress , flaming or aken in your	
2- 1.Ci	ircuit Design 1. Operating The spect temperatu	Temperature Range cified "Operating Temperature Range" in the Specifications				
2-1-2	The Capac If voltage r AC voltage In case of voltage or	Voltage application acitors shall not be operated exceeding the specified "Rated Volta ratings are exceeded, the Capacitors could result in failure or da jes to the Capacitors, the designed peak voltage shall be within the f AC of pulse voltage, the peak voltage shall be within the specif or fast rising pulse voltage is applied continuously even wit ng section before use. Such continuous application affects the life	amage. In case the specified "F fied "Rated Vol thin the "Rate	of application Rated Voltage tage". If hig d Voltage", d	e". h frequency	
2-1-3	The Capa the Speci	and Discharging Current acitors shall not be operated beyond the specified "Maximum Ch ifications. Applications to a low impedance circuit such as nded for safety.				
2-1-4	The "Oper which is ca and wave	ure Rise by Dielectric Loss of the Capacitors rating Temperature Range" mentioned above shall include a max aused by the Dielectric loss of the Capacitor and applied electric form etc.). It is recommended to measure and check "Surface at at room temperature (up to 25°C).	cal stresses (su	uch as voltage	e, frequency	
2-1-5	The Capac (1) Enviro (a) To (b) To (c) Un	n on Environmental Conditions acitors shall not be operated and / or stored under the following e onmental conditions o be exposed directly to water or salt water o be dew formation nder conditions of corrosive gases such as hydrogen sulfide, sult r severe conditions of vibration or impact beyond the specified co	lfurous acid, ch	lorine and an		
2-1-6	 2-1-6. DC voltage characteristics The Capacitors (Class 2) employ dielectric ceramics with dielectric constant having voltage dependency, and if applied DC voltage is high, capacitance may broadly change. For the specified capacitance, the following should be confirmed. (1) If capacitance change by applied voltage is within the allowable range, or if its application allows unlimited capacitance change. (2) DC voltage characteristics demonstrate, even if applied voltage is under the rated voltage, capacitance change rate increases with higher voltage (Capacitance down). Accordingly, when the Capacitors are used for circuits with narrow capacitance allowable range such as time constant circuits, we recommend to apply lower voltage upon due consideration on capacitance aging in addition to the above.					
Note ;	,					
		Panasonic Electronic Devices Co., Ltd.	_	CHECK	DESIGN	
	•		Y.Sakaguchi	S.Endoh	T.Shinriki	



		PECIFICAT	IONS						ECJ-SS009E
SUBJECT	Multilave	r Ceramic C	hip Ca	pacito	r			PAGE	3 of 10
	Common Spec		•	•				DATE 1	Apr, 2005
(1) Re	of Land Pattern commended land dime excessive stress to the						der to pre	event crackin	g at the time
	ommended land dimens General Electronic Equi		apacitar	nce, Lov	v ProfileT	ype, 100V	•200V s	eries]	
Land	SMD	Туре	Corr	nonent	Dimensio	n			Unit in mm
		(EIA)	L	W	T	511	а	b	С
		06 (0201)	0.6	0.3	0.3		to 0.3	0.25 to 0.3	0.2 to 0.3
	╧╧╧┷╋	<u>10 (0402)</u> 11 (0603)	1.0 1.6	0.5 0.8	0.5		to 0.5 to 1.0	0.4 to 0.5 0.6 to 0.8	0.4 to 0.5 0.6 to 0.8
_ b.	a Solder	12 (0805)	2.0	1.25	0.6 to 1	.25 0.8	to 1.2	0.8 to 1.0	0.8 to 1.0
	resist	13 (1206)	3.2	1.6	0.6 to 1		to 2.2	1.0 to 1.2	1.0 to 1.3
		23 (1210) 34 (1812)	3.2 4.5	2.5 3.2	1.4 to 2 2.5 to 3		to 2.2 to 3.5	1.0 to 1.2 1.2 to 1.6	1.8 to 2.3 2.3 to 3.0
[Wide	e-width Type]								
Land	SMD								Unit in m
at.		Type (EIA)	Com	ponent W	Dimensio T	on	а	b	с
<u>a</u> v		21(0508)	1.25			5 0.5	to 0.7	0.5 to 0.6	1.4 to 1.9
<u> </u>		31(0612)	1.6	3.2	0.8	5 0.8	to 1.0	0.6 to 0.7	2.5 to 3.0
<	h								
[Array	/ Type]								
<u>4 Cap.</u>									Unit in mr
<u>4 Cap.</u>			Compo		nension	а	b	с	Unit in mn
<u>4 Cap.</u> 1 م		Type (EIA) 12	L	W	Т	a 0.55	b 0.5	c 0.2	
	Array C P/2 P 	(ÉÍA) 12 (0805)	Compo L 2.0		mension T 0.85	0.55 to 0.75	0.5 to 0.6	0.2 6 to 0.3	P 0.4 to 0.6
* *		(ÉÍA) 12 (0805) 13	L	W	Т	0.55 to 0.75 0.9	0.5 to 0.6 0.7	0.2 6 to 0.3 0.35	P 0.4 to 0.6 0.7
م م لا		(ÉÍA) 12 (0805)	L 2.0	W 1.25	T 0.85	0.55 to 0.75	0.5 to 0.6	0.2 6 to 0.3 0.35	P 0.4 to 0.6
م م لا	Array C P/2 P P/2 P C C C C C C C C C C C C C	(ÉÍA) 12 (0805) 13	L 2.0	W 1.25	T 0.85	0.55 to 0.75 0.9	0.5 to 0.6 0.7	0.2 6 to 0.3 0.35	P 0.4 to 0.6 0.7 to 0.9
o v Si	Array C P/2 P P/2 P C C C C C C C C C C C C C	(ÈÍA) 12 (0805) 13 (1206)	L 2.0 3.2	W 1.25 1.6 ompone	T 0.85 0.85	0.55 to 0.75 0.9	0.5 to 0.6 0.7	0.2 6 to 0.3 0.35	P 0.4 to 0.6 0.7 to 0.9 Unit in mm
o v Si	Array C P/2 P P/2 P C C C C C C C C C C C C C	(ÉÍA) 12 (0805) 13	L 2.0 3.2	W 1.25 1.6	T 0.85 0.85	0.55 to 0.75 0.9	0.5 to 0.6 0.7	0.2 6 to 0.3 0.35	P 0.4 to 0.6 0.7 to 0.9
⊆ ® 2-fold A	Array C P/2 P P/2 P C C C C C C C C C C C C C	(ĔĬA) 12 (0805) 13 (1206) Type (EIA)	L 2.0 3.2 C D L	W 1.25 1.6 ompone bimensic W	T 0.85 0.85	0.55 to 0.75 0.9 to 1.1 a	0.5 to 0.6 0.7 to 0.9 b 0.45	0.2 5 to 0.3 0.35 0 to 0.45 c 0.3	P 0.4 to 0.6 0.7 to 0.9 Unit in mm P 0.54
⊆ ™ SI <u>2-fold A</u>	Array C P/2 P P/2 P C C C C C C C C C C C C C	(ĚÍA) 12 (0805) 13 (1206) Type	L 2.0 3.2	W 1.25 1.6 ompone	T 0.85 0.85	0.55 to 0.75 0.9 to 1.1 a 0.3 to 0.4 0.3	0.5 to 0.6 0.7 to 0.9 b 0.45 to 0.5 0.4	0.2 to 0.3 0.35 to 0.45	P 0.4 to 0.6 0.7 to 0.9 Unit in mm P 0.54 to 0.74 0.71
si <u>2-fold A</u>	Array C P/2 P P/2 P C Land MD Land MD Land	(ĔĬĂ) 12 (0805) 13 (1206) Type (EIĂ) 11 (0504)	L 2.0 3.2 C D L 1.37	W 1.25 1.6 ompone pimensic W 1.0	T 0.85 0.85 ent on T 0.6 0.8	0.55 to 0.75 0.9 to 1.1 a 0.3 to 0.4 0.3 to 0.6	0.5 to 0.6 0.7 to 0.5 b 0.45 to 0.5 0.4 to 0.7	0.2 to 0.3 0.35 to 0.45	P 0.4 to 0.6 0.7 to 0.9 Unit in mm P 0.54 to 0.74 0.71 to 0.91
La The second se	Array C P/2 P C C C C C C C C C C C C C	(ÉÍA) 12 (0805) 13 (1206) Type (EIA) 11 (0504) e designed to b from that on th	L 2.0 3.2 C D L 1.37 e equal e left lai	W 1.25 1.6 ompone pimensic W 1.0 betwee nd, the o	T 0.85 0.85 ent D 0.6 0.8 en the rigit compone	0.55 to 0.75 0.9 to 1.1 a 0.3 to 0.4 0.3 to 0.6 nt and left nt may be	0.5 to 0.6 0.7 to 0.5 b 0.45 to 0.5 0.4 to 0.7 sides. If cracked	0.2 5 to 0.3 0.35 0.35 0 to 0.45 c 0.3 0.35 0 to 0.45 0 0.3 5 to 0.4 0.46 to 0.56 the amount lby stress to	P 0.4 to 0.6 0.7 to 0.9 Unit in mm P 0.54 to 0.74 0.71 to 0.91
La The second se	Array C P/2 P Array MD Land Land Land Array C C Land Land Array C Land C Land C Land C Land C Land C Land Land C Land C Land C Land	(ÉÍA) 12 (0805) 13 (1206) Type (EIA) 11 (0504) e designed to b from that on th side with a larg	L 2.0 3.2 C D L 1.37 e equal e left lai jer amou	W 1.25 1.6 ompone pimensic W 1.0 t.0	T 0.85 0.85 ent D 0.6 0.8 en the rigit compone	0.55 to 0.75 0.9 to 1.1 a 0.3 to 0.4 0.3 to 0.6 ht and left nt may be lifies later	0.5 to 0.6 0.7 to 0.5 b 0.45 to 0.5 0.4 to 0.7 sides. If cracked	0.2 5 to 0.3 0.35 0.35 0 to 0.45 c 0.3 0.35 0 to 0.45 0 0.3 5 to 0.4 0.46 to 0.56 the amount lby stress to	P 0.4 to 0.6 0.7 to 0.9 Unit in mm P 0.54 to 0.74 0.71 to 0.91
La The second se	Array C P/2 P Array C Array C C C C C C C C C C C C C	(ÈÍA) 12 (0805) 13 (1206) Type (EIA) 11 (0504) e designed to b from that on the side with a larg <u>Recomm</u>	L 2.0 3.2 C D L 1.37 e equal e left lan ler amou hended /	W 1.25 1.6 ompone bimensic W 1.0 1.0 betwee nd, the unt of sc Amount er amou	T 0.85 0.85 0.85 0.8 0.8 0.6 0.8 0.8 0.8 0.8	0.55 to 0.75 0.9 to 1.1 a 0.3 to 0.4 0.3 to 0.6 ht and left nt may be difies later c (c)Insuffie	0.5 to 0.6 0.7 to 0.9 b 0.45 to 0.5 0.4 to 0.7 sides. If cracked at the tir	0.2 5 to 0.3 0.35 0.35 0 to 0.45 c 0.3 0.35 0 to 0.45 0 0.3 5 to 0.4 0.46 to 0.56 the amount lby stress to	P 0.4 to 0.6 0.7 to 0.9 Unit in mm P 0.54 to 0.74 0.71 to 0.91
La The second se	Array C P/2 P Array C Array C C C C C C C C C C C C C	(ÈÍA) 12 (0805) 13 (1206) Type (EIA) 11 (0504) e designed to b from that on the side with a larg <u>Recomm</u>	L 2.0 3.2 C D L 1.37 e equal e left lan er amou hended <i>j</i>	W 1.25 1.6 ompone pimensic W 1.0 1.0 betwee nd, the out of sc Amount er amou	T 0.85 0.85 0.85 0.8 0.8 0.6 0.8 0.8 0.8 0.8	0.55 to 0.75 0.9 to 1.1 a 0.3 to 0.4 0.3 to 0.6 ht and left nt may be lifies later	b 0.45 to 0.5 0.7 to 0.5 0.4 to 0.5 0.4 to 0.7 sides. If cracked at the tir	0.2 5 to 0.3 0.35 0.35 0 to 0.45 c 0.3 0.35 0 to 0.45 0 0.3 5 to 0.4 0.46 to 0.56 the amount lby stress to	P 0.4 to 0.6 0.7 to 0.9 Unit in mm P 0.54 to 0.74 0.71 to 0.91
م م <u>ع</u> <u>2-fold A</u> م ر ر (2) Th the	Array C P/2 P Array C Array C C C C C C C C C C C C C	(ÉÍA) 12 (0805) 13 (1206) Type (EIA) 11 (0504) e designed to b from that on the side with a larg <u>Recomment</u> mount (b)	L 2.0 3.2 C D L 1.37 e equal e left lan ler amou hended /	W 1.25 1.6 ompone pimensic W 1.0 1.0 betwee nd, the out of sc Amount er amou	T 0.85 0.85 on T 0.6 0.8 0.8 en the rigit compone older solic of Solder unt	0.55 to 0.75 0.9 to 1.1 a 0.3 to 0.4 0.3 to 0.6 ht and left nt may be difies later c (c)Insuffie	b 0.45 to 0.5 0.7 to 0.5 0.4 to 0.5 0.4 to 0.7 sides. If cracked at the tir	0.2 to 0.3 0.35 0.35 to 0.45 c 0.3 to 0.45 0.3 to 0.45 0.3 to 0.45 0.46 to 0.56 the amount by stress to ne of cooling	0.4 to 0.6 0.7 to 0.9 Unit in mm P 0.54 to 0.74 0.71 to 0.91

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS009E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 4 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005

2-2-3. Applications of Solder Resist


- Applications of Solder resist are effective to prevent solder bridges and to control amounts of solder on PC boards.
- (1) Solder resist shall be utilized to equalize the amounts of solder on both sides.
- (2) If the Capacitors are arranged in succession, solder resist shall be used to divide the pattern in the mixed mounting with a component with lead wires or in the arrangement near a chassis etc. See the table below.

2-2-4. Component Layout

The Capacitors / components shall be placed on the PC board so as to have both electrodes subjected to uniform stresses, or to position the component electrodes at right angles to the grid glove or bending line to avoid cracking in the Capacitors caused by the bending of the PC board after or during placing / mounting the Capacitors / components on the PC board.

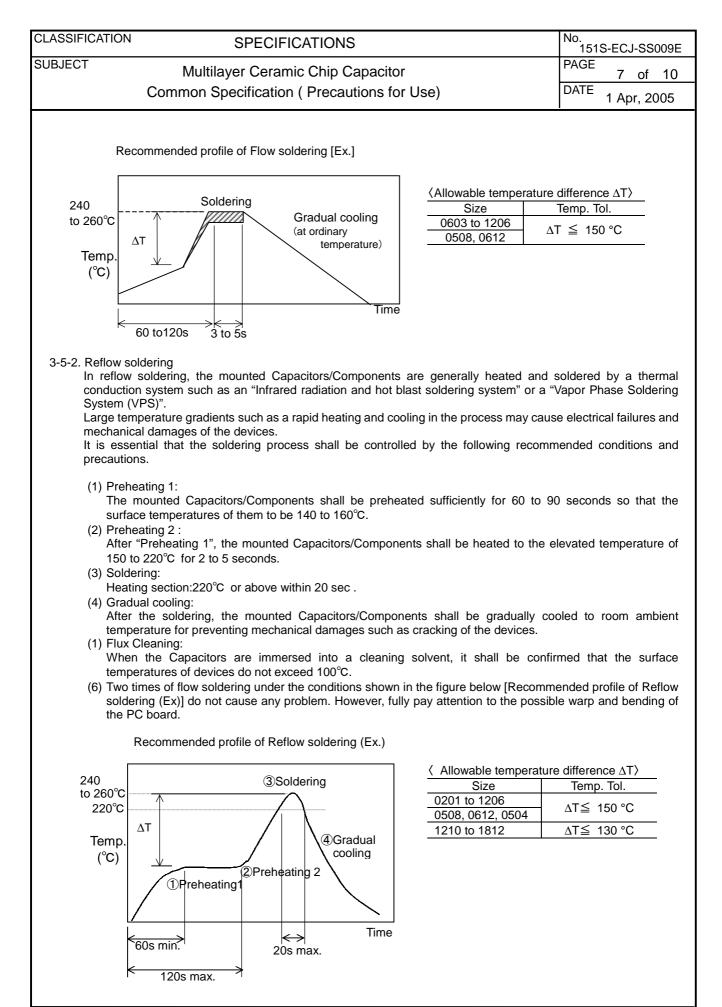
(1) The recommended layout of the Capacitor to minimize mechanical stress caused by warp or bending of a PC board is as below.

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS009E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 5 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005
should be	carefully determined.	

3. Precautions for Assembly

3-1.Storage

- (1) The Capacitors shall be stored under 5 40°C and 20 70%RH, not under severe conditions of high temperature and humidity.
- (2) If the storage place is humid, dusty, and contains corrosive gasses (hydrogen sulfide, sulfurous acid, hydrogen chloride and ammonia, etc.), the solderability of the terminal electrodes may deteriorate. Also, storage in a place subjected to heating or exposed to direct sunlight causes deformed tapes and reels of
- taped version and/or components sticking to tapes, which results in troubles at the time of mounting. (3) The storage period shall be within 6 months. Products stored for more than 6 months shall be checked their
- (3) The storage period shall be within 6 months. Products stored for more than 6 months shall be checked their solderability before use.
- (4) The Capacitors of high dielectric constant series (Class 2, Characteristic B,X7R,X5R and F,Y5V) change in capacitance with the passage of time, "Capacitance aging", due to the inherent characteristics of ceramic dielectric materials. The changed capacitance can be recovered by heat treatment to each initial value at the time of shipping. (See 2. Operating Condition and Circuit Design, 2-1-7. Capacitance aging)
- (5) When the initial capacitance is measured, the Capacitors shall be heat-treated at 150+0/-10°C for 1 hour and then subjected to ordinary temperature and humidity for 48±4 hours before measuring the initial value.

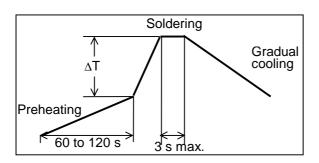

3-2.Adhesives for Mounting

- (1) The amount and viscosity of an adhesive for mounting shall be such that the adhesive shall not flow off on the land during it's curing.
- (2) If the amount of adhesive is insufficient for mounting, the Capacitor may fall after or during soldering.
- (3) If the adhesive is too low in its viscosity, the Capacitors may be out of alignment after or during soldering.
- (4) Adhesives for mounting can be cured by ultraviolet or infrared radiation. In order to prevent the terminal electrodes of the Capacitors from oxidizing, the curing shall be dune at conditions of 160°C max., for 2 minutes max.
- (5) If curing is insufficient, the Capacitor may fall after or during soldering. Also insulation resistance between terminal electrodes may deteriorate due to moisture absorption. In order to prevent these problems, the curing conditions shall be sufficiently examined.

3-3. Chip Mounting Consideration

- (1) When mounting the Capacitors/components on a PC board, the capacitor bodies shall be free from excessive impact loads such as mechanical impact or stress in the positioning, pushing force and displacement of vacuum nozzles at the time of mounting.
- (2) The maintenance and inspections for Chip Mounter must be performed regularly.
- (3) If the bottom dead center of the vacuum nozzle is too low, the Capacitor is cracked by an excessive force at the time of mounting.
 - The following precautions and recommendations are for your reference in use.
 - (a) Set and adjust the bottom dead center of the vacuum nozzles to the upper surface of the PC board after correcting the warp of the PC board.
 - (b) Set the pushing force of the vacuum nozzle at the time of mounting to 1 to 3 N in static load.
 - (c) For double surface mounting, apply a supporting pin on the rear surface of the PC board to suppress the bending of the PC board in order to minimize the impact of the vacuum nozzles. The typical examples are shown in the table below.
 - (d) Adjust the vacuum nozzles so that their bottom dead center at the time of mounting is not too low.
- (4) The closing dimensions of positioning chucks shall be controlled and the maintenance, checks and replacement of positioning chucks shall be regularly performed to prevent chipping or cracking of the Capacitors caused by mechanical impact at the time of positioning due to worn positioning chucks.
- (5) Maximum stroke of the nozzle shall be adjusted so that the maximum bending of PC board does not exceed 0.5mm at 90mm span. The PC board shall be supported by means of adequate supporting pins.

CLASSIFI	CATION	SPECIFICATIONS		No. 151S-ECJ-SS009E
SUBJECT	 Mu	Itilayer Ceramic Chip Capacitor		PAGE 6 of 10
	Commo	n Specification (Precautions for Use)	DATE 1 Apr, 2005
		NG Examples	Improved Examples	by pattern division
		Crack		
	Single surface			
	mounting		The	supporting pin must not
				ecessarily positioned eath the capacitor.
	Double surface			
	mounting			
		Separation⊸	Supporting	9
			pin	
(1) 5 (2) \ (2) \ (3-5.Sold (3-5-1. (0) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Soldering flux having a Do not use soldering f When applying water- on the surface of PC b cleaning. lering Flow soldering n flow soldering pro Gradient" between the Capacitors, resulting i controlled to the follow (1) Application of Sol The soldering flux (1) Preheating: The mounted Ca between the Capa (3) Immersion into So The Capacitors sl (4) Gradual Cooling: The Capacitors sl 8°C/s max. from 2 (5) Flux Cleaning: When the Capacitors of d (6) One time of flow soldering (Ex)] do	soluble soldering flux, wash the Capacitors so boards may deteriorate the insulation resistant cess, abnormal and large thermal and me e mounted Capacitors and melted solder in a in failures and damages of the Capacitors, So ving recommended conditions. dering flux: shall be applied to the mounted Capacitors of pacitors/Components shall be preheated su actors/Components and the melted solder sh	rted to chlorine) or belo sufficiently because the ce on the Capacitor su echanical stresses, can soldering bath, may be o it is essential that sold thinly and uniformly by ifficiently so that the " hall be 150°C max. (100 to 260°C for 3 to 5 sec perature with the coolir o 130°C. ent, it shall be confir a figure below [Recomr	w shall be used. e soldering flux residue rface due to insufficient used by "Temperature e applied directly to the dering process shall be foaming method. Temperature Gradient" 0 to130°C) conds. ng temperature rates of med that the surface
Note ;				



Note ;

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS009E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 8 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005
soldering devices. The solde	oldering of the Capacitors, large temperature gradient between the pli iron may cause electrical failures and mechanical damages such ring shall be carefully controlled and carried out so that the temperat ng recommended conditions for hand soldering.	h as cracking or breaking of the
(a) Sc ¢1 *R (b) Pr Th	tion 1 (with preheating) oldering : .0mm Thread eutectic solder with soldering flux* in the core. osin-based and non-activated flux is recommended. eheating: le Capacitors shall be preheated so that "Temperature Gradient" be ldering iron is 150°C or below.	etween the devices and the tip of
(c) Te (T	mperature of Iron tip: 300°C max. he required amount of solder shall be melted in advance on the sold adual Cooling:	lering tip.)

After soldering, the Capacitors shall be cooled gradually at room ambient temperature.

Recommended profile of Hand Soldering [Ex.]

$\langle Allowable temperature difference \Delta T \rangle$				
Size	Temp. Tol.			
0201 to 1206	∆T≦ 150 °C			
0508, 0612, 0504	$\Delta I \ge 150$ C			
1210 to 1812	∆T≦ 130 °C			

(2) Condition 2 (without preheating)

Modification with a soldering iron is acceptable without preheating if within the conditions specified below.

- (a) Soldering iron tip shall never directly touch the ceramic dielectrics and terminal electrodes of the Capacitors.
- (b) The lands are sufficiently preheated with a soldering iron tip before sliding the soldering iron tip to the terminal electrode of the Capacitor for soldering.

	Condition			
Chip size	0201 to 0805, 0508, 0504	1206 to 1812 , 0612		
Temperature of soldering iron	270 °C Max.	250 °C Max.		
Wattage	20W Max.			
Shape of soldering iron tip	<i>∲</i> 3mm M	Max.		
Soldering time with soldering iron	3s Max.			

Conditions of Hand soldering without preheating

3- 6.Post Soldering Cleaning

- 3-6-1. Residues of soldering fluxes on the PC board after cleaning with an inappropriate solvent may deteriorate on the electrical characteristics and reliability (particularly, insulation resistance) of the Capacitors.
- 3-6-2. Inappropriate cleaning conditions (Such as insufficient cleaning, excessive cleaning) may impair the electrical characteristics and reliability of the Capacitors.
 - (1) If cleaning is insufficient :
 - (a) The halogen substance in the residues of the soldering flux may cause the metal of terminal electrodes to corrode.
 - (b) The halogen substance in the residues of the soldering flux on the surface of the Capacitors may deteriorate the insulation resistance.
 - (c) Water-soluble soldering flux may have more remarkable tendencies of (a) and (b) above compared to those of rosin soldering flux.
 - (2) If cleaning is excessive :

Note;

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS009E
SUBJECT Multi	ilayer Ceramic Chip Capacitor	PAGE 9 of 10
Common	Specification (Precautions for Use)	DATE 1 Apr, 2005
cracking in the s The following co Ultras Ultras Ultras	older and/or ceramic bodies of the Capacito inditions are for Ultrasonic cleaning. ionic wave output: 20 W/L max. ionic wave frequency: 40 kHz max. ionic wave cleaning time: 5 min. max. ated cleaning solvent may cause the same	strength of the terminal electrodes or cause rs due to vibrated PC boards. results in case of insufficient cleaning due to
stresses shall not be applie devices. (1) The mounted PC boards span 0.5mm max. (2) It shall be confirmed the positions.	ed to the PC board and mounted compone s shall be supported by some adequate sup	al pins, abnormal and excess mechanical ents, to prevent failures or damages of the oporting pins setting their bending to 90 mm are equal in height and are set in the right nding of PC board.
	NG Example	Recommended Example
Bending of PC board	Check pin Separated	Check pin
other components. (2) Coating materials with la damages (such as crack	arge thermal expansivity shall not be applied king) of the devices in the curing process.	shall not be applied to the Capacitors and d to the Capacitors for preventing failures or
below, which cause crac	e mechanical stresses such as bending or to cking in the Capacitors, on the components minimum in the dividing/breaking.	on the
	e PC boards shall be done carefully at m apparatus to prevent the Capacitors on the es.	
As a recommended exa jig where is free from be the PC board.	breaking jig is shown below. mple, Dividing/Breaking of the PC boards sh nding, and so as to be compressive stress fo if holding the PC board at any position apar	hall be done by holding the position near the r the components such as the Capacitors on t from the jig, tensile stress to the Capacitor
Outline of Jig	Recommended Example	NG Example
PC board PC PC	board direction Load	December 2 Chip component
Note ;		

CLASSIFICATION	SPECIFICATIONS		No. 151S-ECJ-SS009E
SUBJECT	Multilayer Ceramic Chip Capacitor		PAGE 10 of 10
	Common Specification (Precautions for Use)		DATE 1 Apr, 2005
The Capa cracked by Never use impaired a large size (2) When han Capacitors When mou caused by may caus	mpact citors shall be free from any excessive mechanical impact. citor body, which is made of ceramics, may be damaged or v dropping impact. e dropped capacitors because their quality may be already and its failure level of significance may be increased. Particularly, capacitors tend to be damaged or cracked more easily. dling the PC boards on which the Capacitors are mounted, the s shall not collide with another PC board. unted PC boards are handled or stored in a stacked state, impact colliding between the corner of the PC board and the Capacitor e damage or cracking in the Capacitor and deteriorate the voltage and insulation resistance of the Capacitor.	Crack	Floor Mounted PCB
	ons described above are typical ones. nting conditions, please contact us.		
Precautions for	Use above are from		
Ceramic (nical Report EIAJ RCR-2335 Caution Guide Line for Operatior Capacitors for Electronic Equipment by Japan Electronics and Inf Association (March 2002 issued)		
Please refer to a	above technical report for details.		
Note ;			

CLASSFICATION	SPECIFICATIONS	No. 151S-ECJ-SV036E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 1 of 6
	Taped and Reeled Packaging Specifications	DATE 28 Apr, 2004

1. Scope

This specification applies to taped and reeled packing for Multilayer ceramic chip capacitors.

2. Applicable Standards

EIAJ (Electric Industries Association of Japan) Standard EIAJ RC-1009B

JIS (Japanese Industrial Standard) Standard JIS C 0806

3. Packing Specification

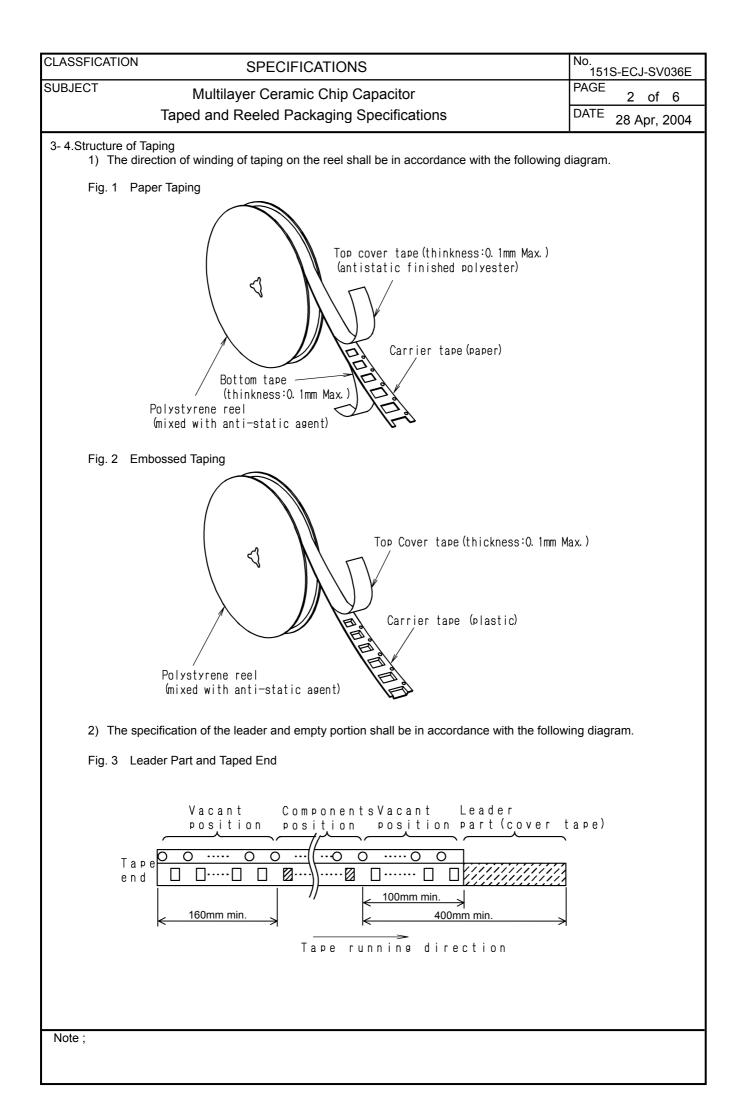
3- 1.Structure and Dimensions

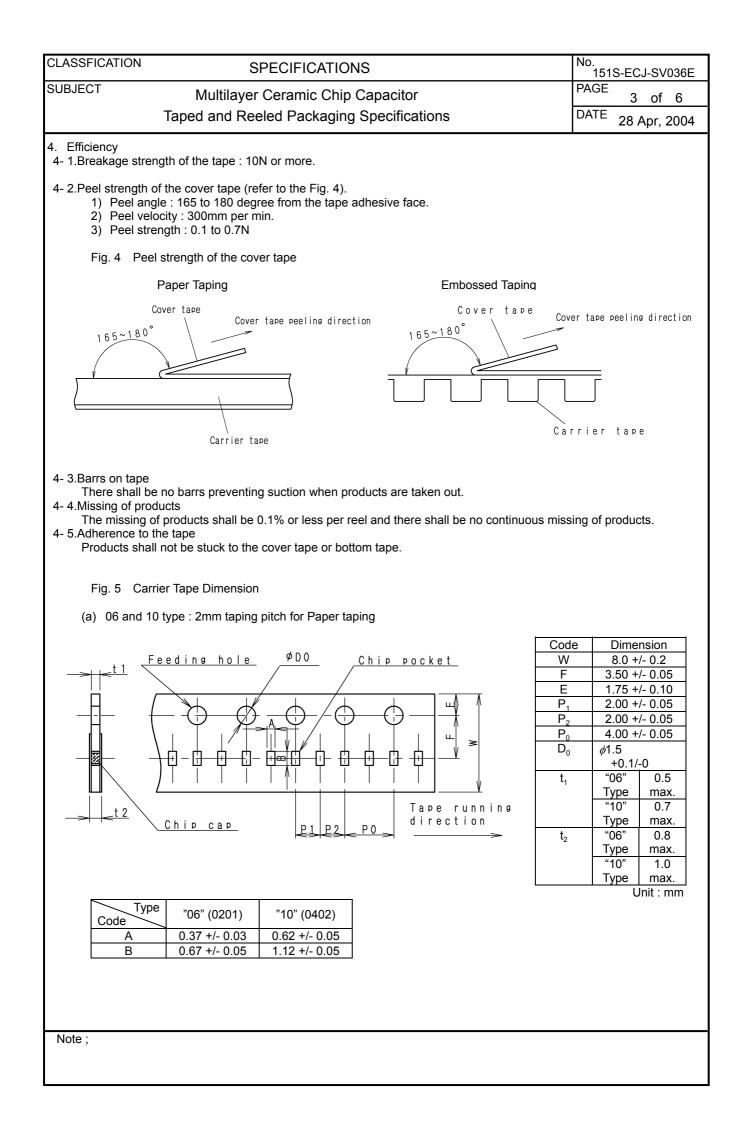
- Paper taping packaging is carried out according the following diagram
 - 1) Carrier tape : Shown in Fig. 5.
 - 2) Reel : Shown in Fig. 6.
 - 3) Packaging : We shall pack suitably in order prevent damage during transportation or storage.

3-2.Packing Quantity

		Carrier-Tap	ре		Quantity ((pcs./reel)	
Туре	Thickness of		Taning	<i>ø</i> 180mn	n Reel Ø330mm Reel		
туре	Capacitor(mm)	Material	Taping Pitch	Packaging Code	Quantity	Packaging Code	Quantity
06type (0201)	0.30 +/- 0.03	Paper Taping	2mm	E	15000		
10type (0402)	0.50 +/- 0.05	Paper Taping	2mm	E	10000	W	50000
11type (0603)	0.8 +/- 0.1	Paper Taping	4mm	V	4000	Z	10000
	0.6 +/- 0.1	Paper Taping	4mm	V	5000	Z	20000
	0.85 +/- 0.10	Paper Taping	4mm	V	4000	Z	10000
12type (0805)	1.25 +/- 0.10 1.25 +/- 0.15 1.25 +/- 0.20	Embossed Tap.	4mm	F	3000		
	0.6 +/- 0.1	Paper Taping	4mm	V	5000	Z	20000
13type (1206)	0.85 +/- 0.10	Paper Taping	4mm	V	4000	Z	10000
13type (1200)	1.15 +/- 0.10	Embossed Tap.	4mm	F	3000		
	1.6 +/- 0.2	Embossed Tap.	4mm	Y	2000		
23type (1210)	2.0 +/- 0.2	Embossed Tap.	4mm	Y	2000		
23(ype (1210)	2.5 +/- 0.3	Embossed Tap.	4mm	Y	1000		
34type (1812)	2.5 +/- 0.3	Embossed Tap.	8mm	Y	500		
34type (1012)	3.2 +/- 0.3	Embossed Tap.	8mm	Y	500		

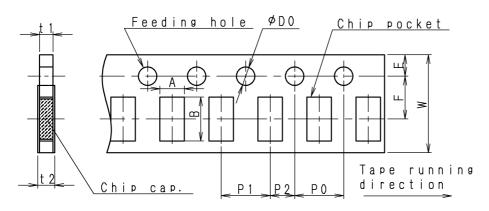
Explanation of Part Numbers (Example)


ECJ 1 V B 1C 104 K Packaging Code


3-3.Marking on the Reel

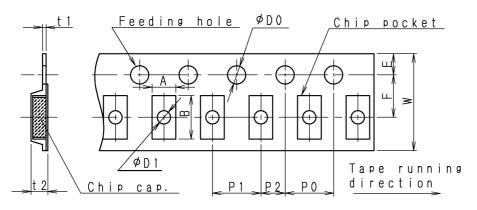
The following items are described in the side of a reel in English at least.

- 1) Part Number
- 2) Quantity
- 3) Lot Number
- 4) Place of origin


Note ;	te; 01 Apr, 2005 Change the company name. Previous : Matsushita Electronic Components Co., Ltd. New : Panasonic Electronic Devices Co., Ltd.			
Panasonic Electronic Devices Co. 1 td		-		DESIGN T.Shinriki

CLASSFICATION SPECIFICATIONS No. 151S-ECJ-SV036E SUBJECT Multilayer Ceramic Chip Capacitor Taped and Reeled Packaging Specifications PAGE 4 of 6 DATE 28 Apr, 2004

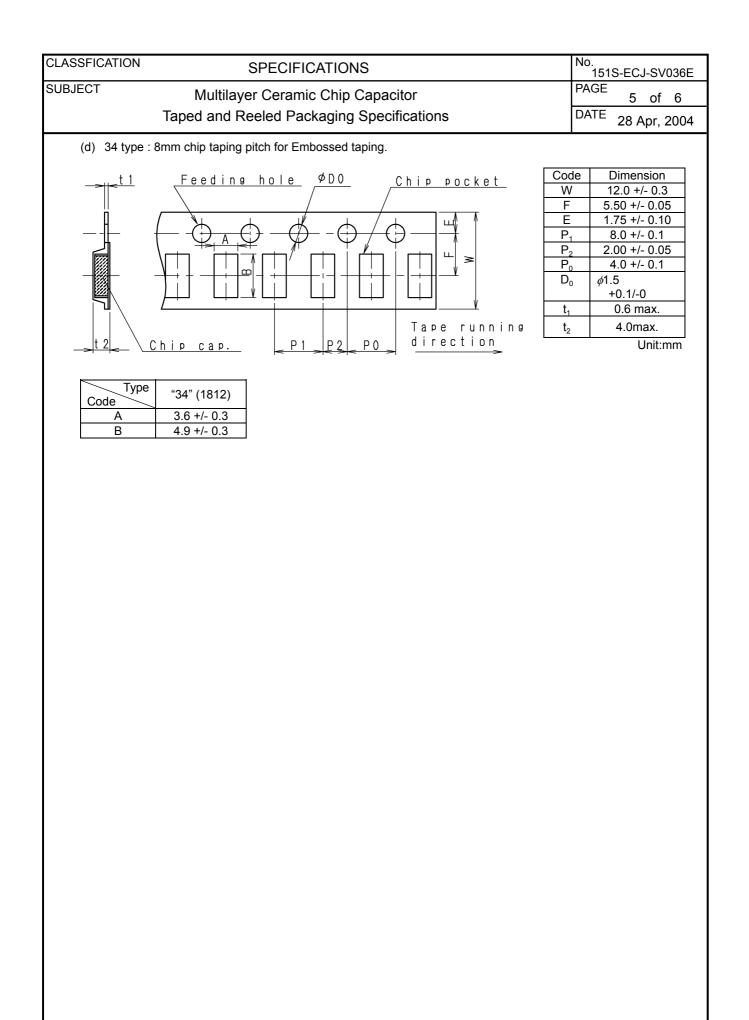
(b) 11 and 12 and 13 type : 4mm taping pitch for Paper taping.

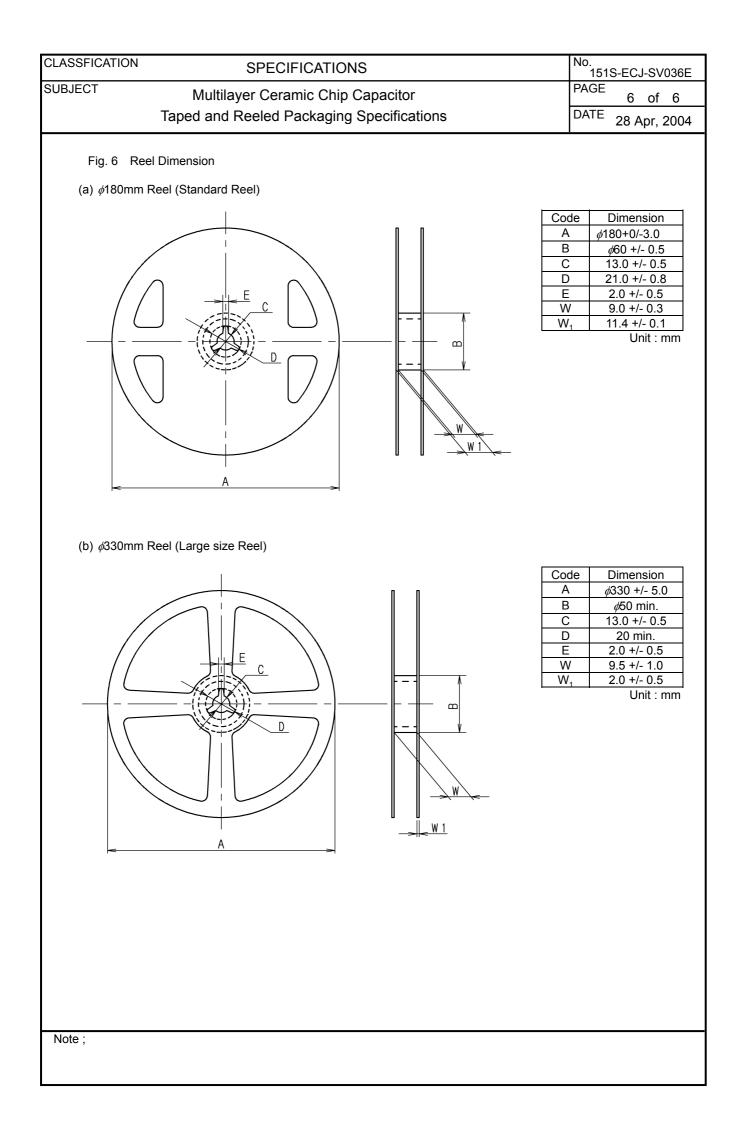


Code	Dimension			
W	8.0 +/- 0.2			
F	3.50 +/- 0.05			
E	1.75 +/- 0.10			
P ₁	4.0 +/- 0.1			
P ₂	2.00 +/- 0.05			
P ₀	4.0 +/- 0.1			
D ₀	<i>ф</i> 1.5			
-	+0.1/-0			
t ₁	1.1 max.			
t ₂	1.4 max.			
11.1				

Unit : mm

Type Code	"11" (0603)	"12" (0805)	"13" (1206)
А	1.0 +/- 0.1	1.65 +/- 0.20	2.0 +/- 0.2
В	1.8 +/- 0.1	2.4 +/- 0.2	3.6 +/- 0.2


(c) 12 and 13 and 23 type : 4mm taping pitch for Embossed taping.


Code	Dimension		
W	8.0 +/- 0.2		
F	3.50 +/- 0.05		
Е	1.75 +/-	- 0.10	
P ₁	4.0 +/- 0.1		
P_2	2.00 +/- 0.05		
P ₂ P ₀	4.0 +/- 0.1		
D_0	<i>ф</i> 1.5		
	+0.1/-0		
D ₁	<i>φ</i> 1.1+/- 0.1		
t ₁	0.6 max.		
	"12"	2.5	
	"13"	max.	
t ₂	Туре		
	"23"	3.5	
	Туре	max.	

Unit : mm

Type Code	"12" (0805)	"13" (1206)	"23" (1210)
A	1.55 +/- 0.20	1.90 +/- 0.20	2.8 +/- 0.2
В	2.35 +/- 0.20	3.5 +/- 0.2	3.5 +/- 0.2

Note ;

