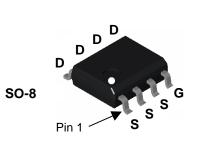
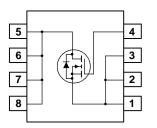
October 2004

# NDS8410A Single 30V N-Channel PowerTrench<sup>o</sup> MOSFET


# General Description


**FAIRCHILD** 

This N-Channel MOSFET are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where fast switching, low inline power loss, and resistance to transients are needed.

### Features

- 10.8 A, 30 V  $R_{DS(ON)} = 12 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$  $R_{DS(ON)} = 17 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Ultra-low gate charge
- + High performance trench technology for extremely low  $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

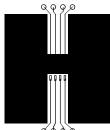


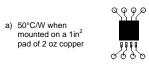


### Absolute Maximum Ratings TA=25°C unless otherwise noted

| Symbol                            | Parameter                               |            | Ratings     | Units |
|-----------------------------------|-----------------------------------------|------------|-------------|-------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                    |            | 30          | V     |
| V <sub>GSS</sub>                  | Gate-Source Voltage                     |            | ±20         |       |
| ID                                | Drain Current – Continuous              | (Note 1a)  | 10.8        | А     |
|                                   | – Pulsed                                |            | 50          |       |
| P <sub>D</sub>                    | Power Dissipation for Single Operation  | (Note 1a)  | 2.5         | W     |
|                                   |                                         | (Note 1b)  | 1.2         |       |
|                                   |                                         | (Note 1c)  | 1.0         |       |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperat | ture Range | -55 to +150 | °C    |

# **Thermal Characteristics**


| $R_{\theta JA}$     | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 50 | °C/W |
|---------------------|-----------------------------------------|-----------|----|------|
| $R_{	ext{	heta}JC}$ | Thermal Resistance, Junction-to-Ambient | (Note 1)  | 25 |      |


# **Package Marking and Ordering Information**

| Device Marking | Device   | Reel Size | Tape width | Quantity   |
|----------------|----------|-----------|------------|------------|
| NDS8410A       | NDS8410A | 13"       | 12mm       | 2500 units |
|                |          |           |            |            |

©2004 Fairchild Semiconductor Corporation

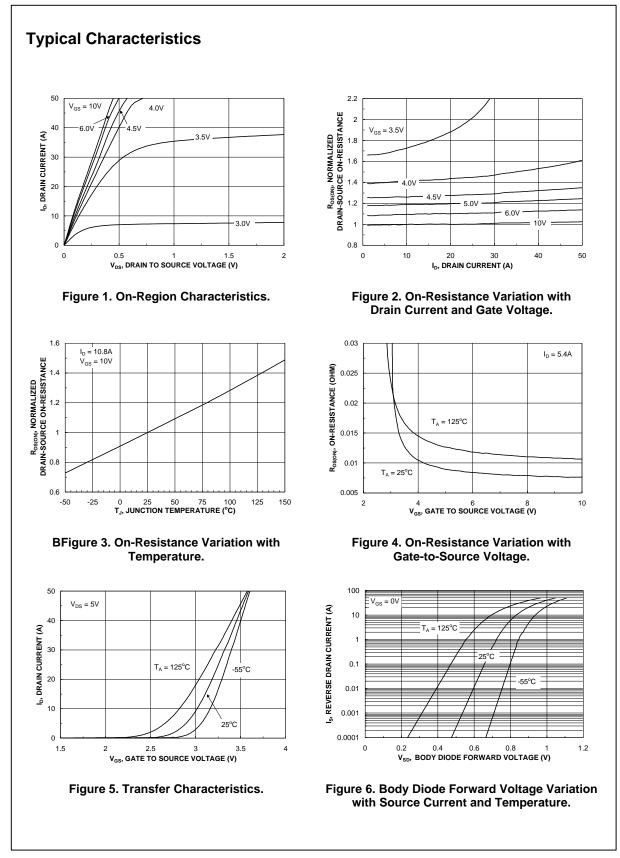
| Symbol                                 | Parameter                                         | Test Conditions                                                                                                                                                         | Min | Тур                | Max            | Units |
|----------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|----------------|-------|
| Off Char                               | acteristics                                       | •                                                                                                                                                                       |     |                    |                |       |
| BV <sub>DSS</sub>                      | Drain–Source Breakdown Voltage                    | $V_{GS} = 0 V$ , $I_{D} = 250 \mu A$                                                                                                                                    | 30  |                    |                | V     |
| <u>ΔBVdss</u><br>ΔTj                   | Breakdown Voltage Temperature<br>Coefficient      | $I_D$ = 250 $\mu$ A, Referenced to 25°C                                                                                                                                 |     | 25                 |                | mV/°C |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current                   | $V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$                                                                                                      |     |                    | 1              | μΑ    |
|                                        |                                                   | $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$                                                                                                 |     |                    | 10             | μΑ    |
| I <sub>GSS</sub>                       | Gate-Body Leakage                                 | $V_{GS} = \pm 20 \text{ V},  V_{DS} = 0 \text{ V}$                                                                                                                      |     |                    | ±100           | nA    |
| On Char                                | acteristics (Note 2)                              | ·                                                                                                                                                                       |     |                    |                |       |
| V <sub>GS(th)</sub>                    | Gate Threshold Voltage                            | $V_{DS} = V_{GS}$ , $I_D = 250 \ \mu A$                                                                                                                                 | 1   | 2                  | 3              | V     |
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate Threshold Voltage<br>Temperature Coefficient | $I_D = 250 \ \mu\text{A}$ , Referenced to $25^{\circ}\text{C}$                                                                                                          |     | -4.9               |                | mV/°C |
| R <sub>DS(on)</sub>                    | Static Drain–Source<br>On–Resistance              | $ \begin{array}{ll} V_{GS} = 10 \ V, & I_D = 10.8 \ A \\ V_{GS} = 4.5 \ V, & I_D = 9 \ A \\ V_{GS} = 10 \ V, & I_D = 10.8 \ A, \ T_J \!=\! 125^\circ \! C \end{array} $ |     | 7.7<br>9.6<br>10.7 | 12<br>17<br>22 | mΩ    |
| I <sub>D(on)</sub>                     | On-State Drain Current                            | $V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$                                                                                                                    | 50  |                    |                | Α     |
| <b>g</b> fs                            | Forward Transconductance                          | $V_{DS} = 10 \text{ V}, \qquad I_D = 10.8 \text{ A}$                                                                                                                    |     | 55                 |                | S     |
| Dynamic                                | Characteristics                                   |                                                                                                                                                                         |     |                    |                |       |
| Ciss                                   | Input Capacitance                                 | $V_{DS} = 15 V$ , $V_{GS} = 0 V$ ,                                                                                                                                      |     | 1620               |                | pF    |
| Coss                                   | Output Capacitance                                | f = 1.0 MHz                                                                                                                                                             |     | 380                |                | pF    |
| C <sub>rss</sub>                       | Reverse Transfer Capacitance                      |                                                                                                                                                                         |     | 160                |                | pF    |
| R <sub>G</sub>                         | Gate Resistance                                   | $V_{GS} = 15 \text{ mV},  f = 1.0 \text{ MHz}$                                                                                                                          |     | 1.3                |                | Ω     |
| Switchin                               | g Characteristics (Note 2)                        |                                                                                                                                                                         |     |                    |                |       |
| t <sub>d(on)</sub>                     | Turn–On Delay Time                                | $V_{DD} = 15 V$ , $I_D = 1 A$ ,                                                                                                                                         |     | 10                 | 19             | ns    |
| t <sub>r</sub>                         | Turn–On Rise Time                                 | $V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$                                                                                                                      |     | 6                  | 22             | ns    |
| t <sub>d(off)</sub>                    | Turn–Off Delay Time                               |                                                                                                                                                                         |     | 27                 | 45             | ns    |
| t <sub>f</sub>                         | Turn–Off Fall Time                                |                                                                                                                                                                         |     | 12                 | 27             | ns    |
| Qg                                     | Total Gate Charge                                 | $V_{DS} = 15 \text{ V}, \qquad I_D = 10.8 \text{ A},$                                                                                                                   |     | 16                 | 22             | nC    |
| Q <sub>gs</sub>                        | Gate-Source Charge                                | $V_{GS} = 5 V$                                                                                                                                                          |     | 4.8                |                | nC    |
| Q <sub>gd</sub>                        | Gate-Drain Charge                                 |                                                                                                                                                                         |     | 5.6                |                | nC    |
| Drain-So                               | ource Diode Characteristics                       | and Maximum Ratings                                                                                                                                                     |     |                    |                |       |
| ls                                     | Maximum Continuous Drain-Source                   | e Diode Forward Current                                                                                                                                                 |     |                    | 2.1            | Α     |
| V <sub>SD</sub>                        | Drain–Source Diode Forward<br>Voltage             | $V_{GS}=0\ V,  I_S=2.1\ A \qquad (\text{Note 2})$                                                                                                                       |     | 0.82               | 1.2            | V     |
| t <sub>rr</sub>                        | Diode Reverse Recovery Time                       | $I_F = 10.8 \text{ A},  d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$                                                                                                         |     | 28                 |                | nS    |
| Q <sub>rr</sub>                        | Diode Reverse Recovery Charge                     | ]                                                                                                                                                                       |     | 18                 |                | nC    |



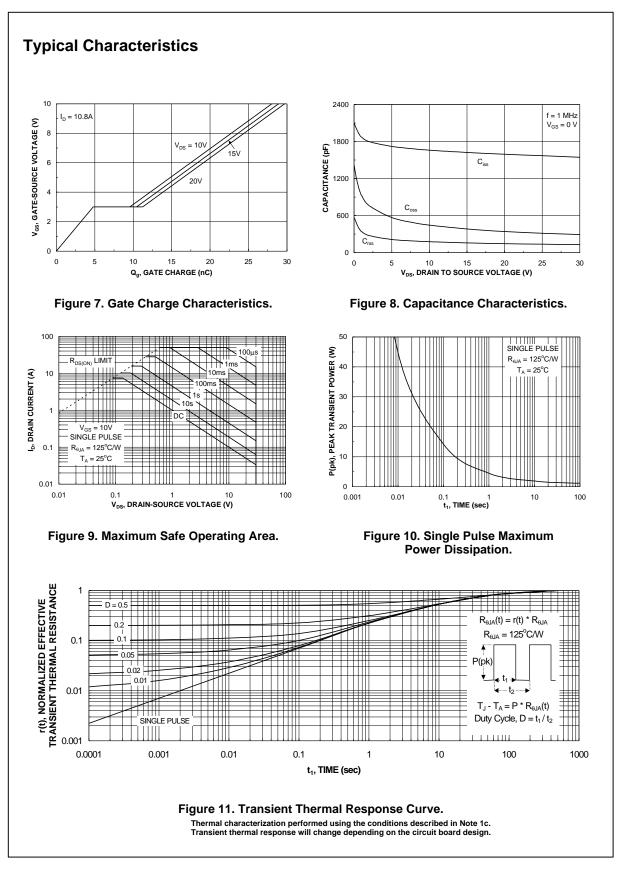


b) 105°C/W when mounted on a .04 in<sup>2</sup> pad of 2 oz copper

c) 125°C/W when mounted on a minimum pad.


.....

0000 Scale 1 : 1 on letter size paper


2. Pulse Test: Pulse Width < 300 $\mu s,$  Duty Cycle < 2.0%

NDS8410A Rev D1(W)

NDS8410A



# NDS8410A



NDS8410A

### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx™                                                                                                                          | FAST®               | ISOPLANAR™                     | Power247™                                            | Stealth™              |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|------------------------------------------------------|-----------------------|
| ActiveArray™                                                                                                                   | FASTr™              | LittleFET™                     | PowerEdge™                                           | SuperFET™             |
| Bottomless™                                                                                                                    | FPS™                | MICROCOUPLER™                  | PowerSaver™                                          | SuperSOT™-3           |
| CoolFET™                                                                                                                       | FRFET™              | MicroFET™                      | PowerTrench <sup>®</sup>                             | SuperSOT™-6           |
| CROSSVOLT™                                                                                                                     | GlobalOptoisolator™ | MicroPak™                      | QFET <sup>®</sup>                                    | SuperSOT™-8           |
| DOME™                                                                                                                          | GTO™                | MICROWIRE™                     | QS™                                                  | SyncFET™              |
| EcoSPARK™                                                                                                                      | HiSeC™              | MSX™                           | QT Optoelectronics <sup>™</sup>                      | TinyLogic®            |
| E <sup>2</sup> CMOS <sup>™</sup>                                                                                               | I²C™                | MSXPro™                        | Quiet Series <sup>™</sup>                            | TINYOPTO™             |
| EnSigna™                                                                                                                       | <i>i-Lo</i> ™       | OCX™                           | RapidConfigure™                                      | TruTranslation™       |
| FACT™                                                                                                                          | ImpliedDisconnect™  | OCXPro™                        | RapidConnect™                                        | UHC™                  |
| FACT Quiet Series <sup>™</sup>                                                                                                 |                     | OPTOLOGIC <sup>®</sup>         | µSerDes™                                             | UltraFET <sup>®</sup> |
| Across the board. Around the world. <sup>™</sup><br>The Power Franchise <sup>®</sup><br>Programmable Active Droop <sup>™</sup> |                     | OPTOPLANAR™<br>PACMAN™<br>POP™ | SILENT SWITCHER <sup>®</sup><br>SMART START™<br>SPM™ | VCX™                  |

### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

### **PRODUCT STATUS DEFINITIONS**

#### **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or<br>In Design | This datasheet contains the design specifications for<br>product development. Specifications may change in<br>any manner without notice.                                                                                          |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |
|                          |                           | Rev. 113                                                                                                                                                                                                                          |