

January 1988 Revised January 2004

MM74HC597 8-Bit Shift Registers with Input Latches

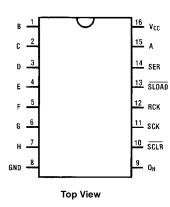
General Description

This high speed register utilizes advanced silicon-gate CMOS technology. It has the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 10 LS-TTL loads.

The MM74HC597 comes in a 16-pin package and consists of an 8-bit storage latch feeding a parallel-in, serial-out 8-bit shift register. Both the storage register and shift register have positive-edge triggered clocks. the shift register also has direct load (from storage) and clear inputs.

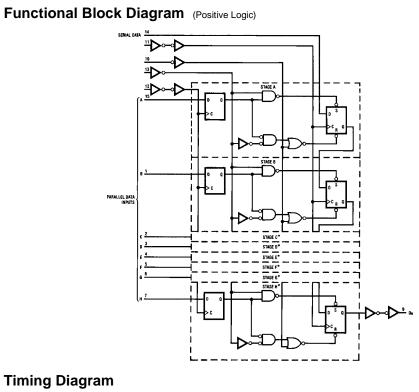
The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

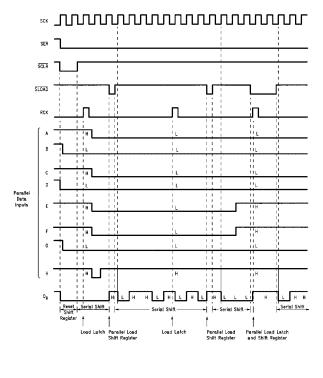
Features


- 8-bit parallel storage register inputs
- Wide operating voltage range: 2V-6V
- Shift register has direct overriding load and clear
- Guaranteed shift frequency: DC to 30 MHz
- Low quiescent current: 80 µA maximum

Ordering Code:

Order Number	Package Number	Package Description
MM74HC597M (Note 1)	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC597SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC597N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Note 1: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagram

Truth Table

RCK	SCK	SLOAD	SCLR	Function		
1	Х	Х	Χ	Data Loaded to input latches		
↑	Х	ı	ш	Data loaded from inputs to		
'	^	L	H H L	shift register		
No				Data transferred from		
clock	Х	L	Н	input latches to shift		
edge				register		
				Invalid logic, state of		
Х	Х	L	L	shift register indeterminate		
				when signals removed		
Х	Х	Н	L	Shift register cleared		
Х	↑	Н	П	Shift register clocked		
^	'	17	17	$Q_n = Q_n - 1$, $Q_0 = SER$		

Absolute Maximum Ratings(Note 2)

(Note 3)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}+1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5 V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 4)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 2: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 3: Unless otherwise specified all voltages are referenced to ground.

Note 4: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	$T_A = -40 \text{ to } 85^{\circ}\text{C}$	$T_A = -55 \text{ to } 125^{\circ}\text{C}$	Units
Syllibol			• 66	Тур	Guaranteed Limits			Onits
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	
	Input Voltage		4.5V		1.35	1.35	1.35	V
	(Note 6)		6.0V		1.8	1.8	1.8	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	v
			6.0V	6.0	5.9	5.9	5.9	
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.2	5.48	5.34	5.2	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	l v
			6.0V	0	0.1	0.1	0.1	
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	
I _{IN}	Maximum Input Current	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

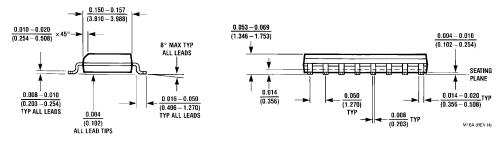
Note 5: For a power supply of $5V \pm 10\%$ the worst case output voltages $(V_{OH},$ and $V_{OL})$ occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current $(I_{IN}, I_{CC},$ and $I_{OZ})$ occur for CMOS at the higher voltage and so the 6.0V values should be used.

Note 6: V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

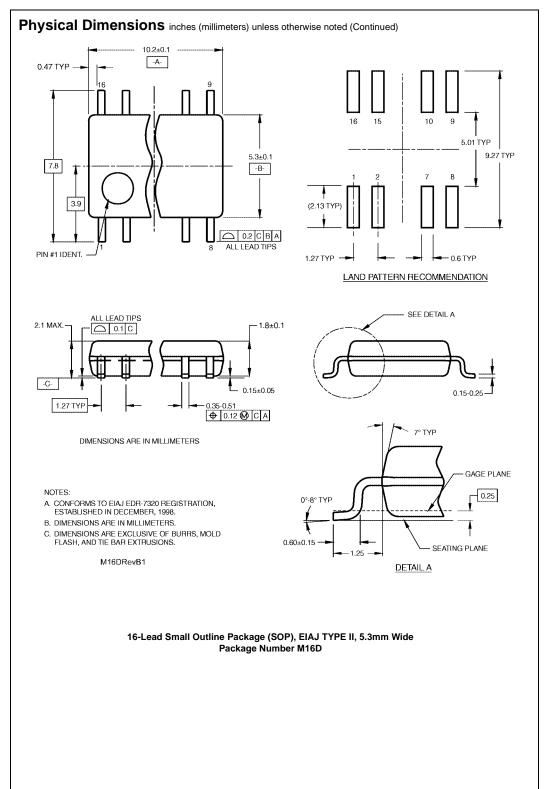
AC Electrical Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units	
f _{MAX}	Maximum Operating		50	30	MHz	
	Frequency of SCK		50	30	IVITIZ	
t _{PHL}	Maximum Propagation		20	30	ns	
t _{PLH}	Delay from SCK to Q _H		20	30	115	
t _{PHL}	Maximum Propagation		20	30	ns	
t _{PLH}	Delay from SLOAD to Q _H		20	30	115	
t _{PHL}	Maximum propagation	01.040	25	45		
t _{PLH}	Delay from RCK to Q _H	SLOAD = logic "0"	25	45	ns	
t _{PHL}	Maximum Propagation		20	30	ns	
	Delay from SCLR to Q _H		20	30	115	
t _{REM}	Minimum Removal Time,		10	20	ns	
	SCLR to SCK		10	20	115	
t _S	Minimum Setup Time		30	40	ns	
	from RCK to SCK		30	40	115	
t _S	Minimum Setup Time		10	20	ns	
	from SER to SCK		10	20	115	
t _S	Minimum Setup Time					
	from inputs A thru H		10	20	ns	
	to RCK					
t _H	Minimum Hold Time		-2	0	ns	
t _W	Minimum Pulse Width		10	16	ns	
	SCK, RCK, SCLR SLOAD		10	10	115	

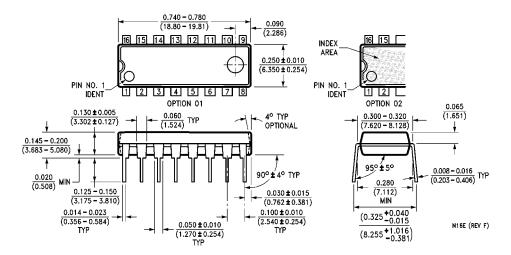
$\textbf{AC Electrical Characteristics} \quad \textit{V}_{\text{CC}} = 2.0 - 6.0 \textit{V}, \, \textit{C}_{L} = 50 \; \text{pF, t}_{r} = \textit{t}_{f} = 6 \; \text{ns (unless otherwise specified)}$


Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		T _A =-40 to 85°C	T _A =-55 to 125°C	Units
Cynnbor	i arameter	Conditions		Тур		Guaranteed Limits		
f _{MAX}	Maximum Operating		2.0V	10	6.0	4.8	4.0	
	Frequency		4.5V	45	30	24	20	MHz
			6.0V	50	35	28	24	
t _{PHL}	Maximum Propagation		2.0V	62	175	220	263	
t _{PLH}	Delay from SCK to Q _H		4.5V	20	35	44	53	ns
			6.0V	18	30	38	45	
t _{PHL}	Maximum Propagation		2.0V	65	175	220	263	
t _{PLH}	Delay from SLOAD to Q _H		4.5V	20	35	44	53	ns
			6.0V	18	30	38	45	
t _{PHL}	Maximum Propagation		2.0V	120	205	255	310	
t _{PLH}	Delay from RCK to Q _H	SLOAD = Logic "0"	4.5V	30	41	51	62	ns
			6.0V	28	35	43	53	
t _{PHL}	Maximum Propagatin		2.0V	66	175	220	263	
	Delay from SCLR to Q _H		4.5V	20	35	44	53	ns
			6.0V	18	30	38	45	
t _{REM}	Minimum Removal Time		2.0V		100	125	150	
	SCLR to SCK		4.5V		20	25	30	ns
			6.0V		17	21	25	
t _S	Minimum Setup Time		2.0V		200	250	300	
	from RCK to SCK		4.5V		40	50	60	ns
			6.0V		34	42	50	
t _S	Minimum Setup Time		2.0V		100	125	150	
	from SER to SCK		4.5V		20	25	30	ns
			6.0V		17	21	25	

AC Electrical Characteristics (Continued)


Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		T _A =-40 to 85°C T _A =-55 to 125°C		Units
Oymboi	1 arameter			Тур		Guaranteed Li	mits	7 0
t _S	Minimum Setup Time		2.0V		100	125	150	
	from Inputs A thru H		4.5V		20	25	30	ns
	to RCK		6.0V		17	21	25	
t _H	Minimum Hold Time		2.0V		0	0	0	
			4.5V		0	0	0	ns
			6.0V		0	0	0	
t _W	Minimum Pulse Width		2.0V	30	80	100	120	
	SCK, RCK, SCLR, SLOAD		4.5V	9	16	20	24	ns
			6.0V	8	14	18	20	
t _r , t _f	Maximum Input Rise and		2.0V		1000	1000	1000	
	Fall Time		4.5V		500	500	500	ns
			6.0V		400	400	400	
t _{THL} , t _{TLH}	Maximum Output		2.0V	30	75	95	110	
	Rise and Fall Time		4.5V	10	15	19	22	ns
			6.0V	8	13	16	19	
t _{THL} , t _{TLH}	Maximum Output		2.0V		75	95	110	
	Rise and Fall Time		4.5V		15	19	22	ns
			6.0V		13	16	19	
C _{PD}	Power Dissipation			87				pF
	Capacitance, Outputs (Note 7)			01				pΓ
C _{IN}	Maximum Input			5	10	10	10	pF
	Capacitance			3	10	10	10	PΓ
C _{OUT}	Maximum Output			15	20	20	20	pF
	Capacitance			15	20	20	20	۱ ۲۰

Note 7: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.



16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com