FAIRCHILD

SEMICONDUCTOR TM

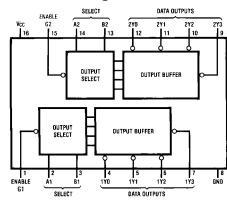
MM74HC139 Dual 2-To-4 Line Decoder

General Description

The MM74HC139 decoder utilizes advanced silicon-gate CMOS technology, and is well suited to memory address decoding or data routing applications. It possesses the high noise immunity and low power consumption usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL logic.

The MM74HC139 contain two independent one-of-four decoders each with a single active low enable input (G1, or G2). Data on the select inputs (A1, and B1 or A2, and B2) cause one of the four normally high outputs to go LOW.

The decoder's outputs can drive 10 low power Schottky TTL equivalent loads, and are functionally as well as pin equivalent to the 74LS139. All inputs are protected from damage due to static discharge by diodes to $\rm V_{CC}$ and ground.


September 1983 Revised December 2003

Ordering Code:

Order Number	Package Number	Package Description
MM74HC139M (Note 1)	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC139SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC139MTC (Note 1)	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC139N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Note 1: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagram

Truth Table

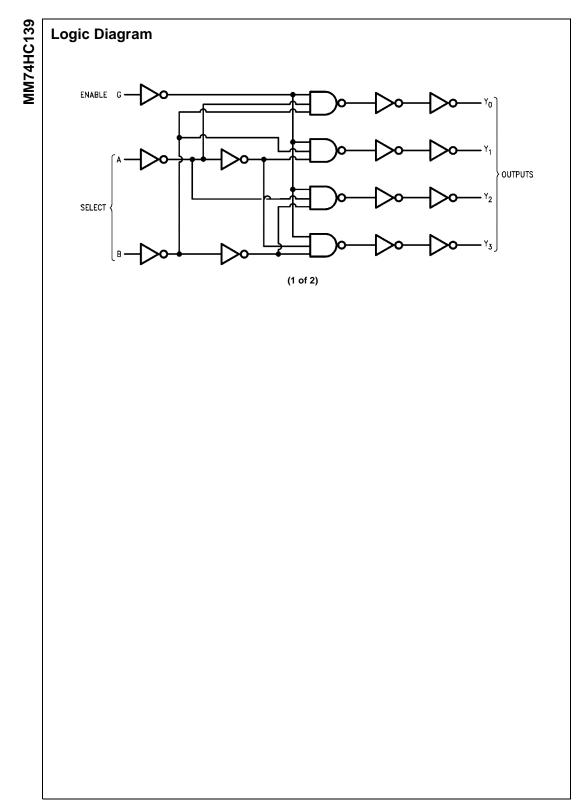
Features

■ Typical propagation delays —

Enable to output: 20 ns

■ Fanout of 10 LS-TTL devices

Select to outputs (4 delays): 18 ns


Select to output (5 delays): 28 ns

Low power: 40 μW quiescent supply power

Input current maximum 1 μA, typical 10 pA

	Inputs			Outputs			
	Enable	Select					
Ī	G	в	Α	Y0	Y1	Y2	Y3
	Н	Х	Х	н	Н	Н	н
	L	L	L	L	н	н	н
	L	L	н	н	L	н	н
	L	н	L	н	н	L	н
	L	н	н	н	н	н	L
HIGH Level							

L = LOW Level X = Don't Care

Absolute Maximum Ratings(Note 2)

Recommended Operating Conditions

	0
(Note 3)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} $+1.5$ V
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 4)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V _{CC}	V
(V _{IN} , V _{OUT})			
Operating Temperature Range (T_A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 2: Absolute Maximum Ratings are those	a values k	nevond whi	ich dam-

MM74HC139

Note 2: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 3: Unless otherwise specified all voltages are referenced to ground. Note 4: Power Dissipation temperature derating — plastic "N" package: –

12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 5)

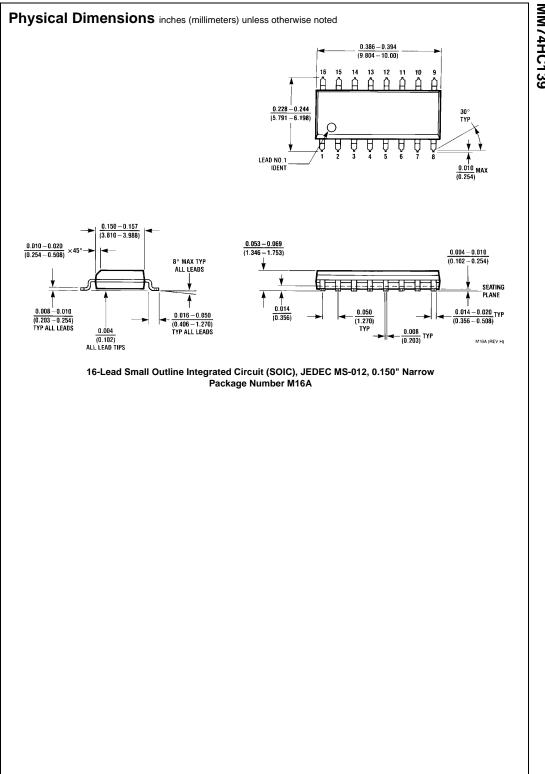
Symbol	Parameter	Conditions	Vcc	T _A =	25°C	$T_A{=}{-}40$ to $85^\circ C$	to 85°C $T_A = -55$ to 125°C	
Symbol	i aldineter	Conditions	•CC	Тур		Guaranteed L	imits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	
			4.5V	4.5	4.4	4.4	4.4	
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	
			4.5V	0	0.1	0.1	0.1	
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μΑ
	Supply Current	$I_{OUT} = 0 \ \mu A$						

Note 5: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

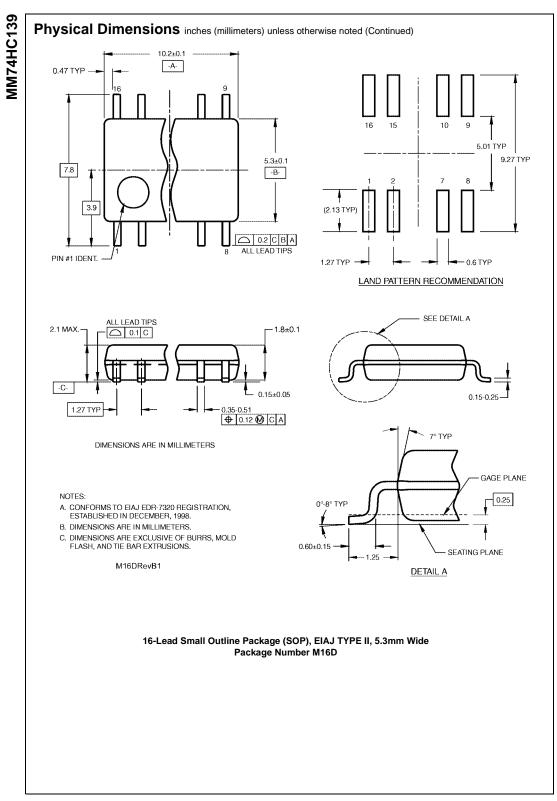
റ
က
~
υ
Т
4
~
⋝
Ξ
2

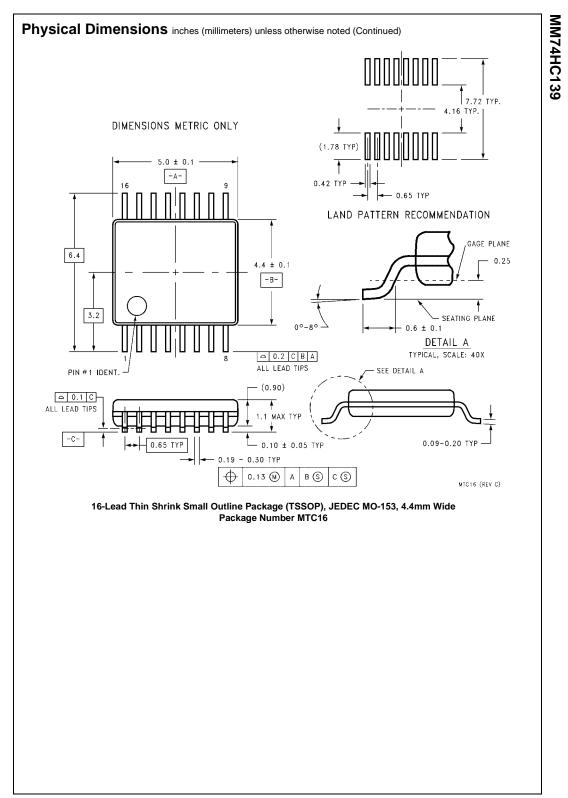
AC Electrical Characteristics

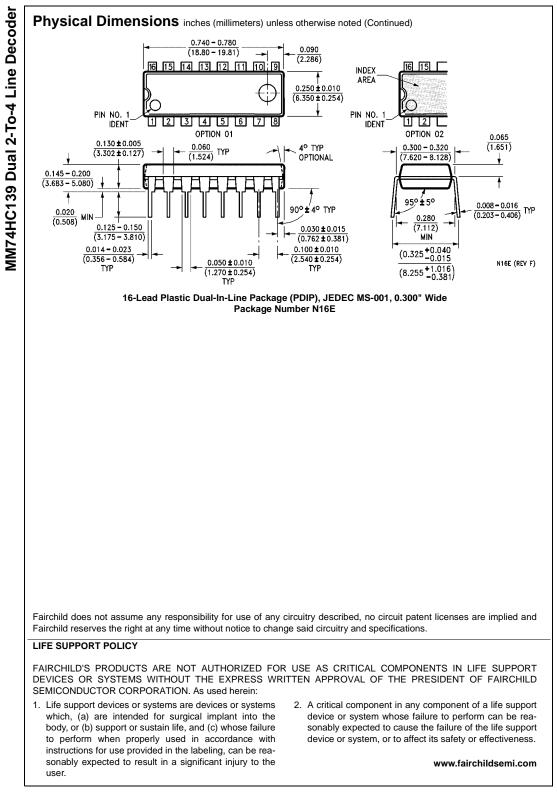
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation		18	30	ns
	Delay, Binary Select to any Output				
	4 levels of delay				
t _{PHL} , t _{PLH}	Maximum Propagation		28	38	ns
	Delay, Binary Select to any Output				
	5 levels of delay				
t _{PHL} , t _{PLH}	Maximum Propagation		19	30	ns
	Delay, Enable to any Output				


AC Electrical Characteristics

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_{A}=-40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
			• CC	Тур		Guaranteed L	imits	Units
t _{PHL} , t _{PLH}	Maximum Propagation	(Note 6)	2.0V	110	175	219	254	
	Delay Binary Select to		4.5V	22	35	44	51	ns
	any Output 4 levels of delay		6.0V	18	30	38	44	
t _{PHL} , t _{PLH}	Maximum Propagation	(Note 7)	2.0V	165	220	275	320	
	Delay Binary Select to any		4.5V	33	44	55	64	ns
	Output 5 levels of delay		6.0V	28	38	47	54	
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	115	175	219	254	
	Delay Enable to any		4.5V	23	35	44	51	ns
	Output		6.0V	19	30	38	44	
t _{TLH} , t _{TLH}	Maximum Output Rise		2.0V	30	75	95	110	
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	
CIN	Maximum Input			3	10	10	10	pF
	Capacitance							1
C _{PD}	Power Dissipation	(Note 8)		75				pF
	Capacitance (Note 8)							1


Note 6: 4 levels of delay are A to Y1, Y3 and B to Y2, Y3.


Note 7: 5 levels of delay are A to Y0, Y2 and B to Y0, Y1.


Note 8: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HC139

