SEMICONDUCTOR

FAIRCHILD

MM74C192 • MM74C193 Synchronous 4-Bit Up/Down Decade Counter • Synchronous 4-Bit Up/Down Binary Counter

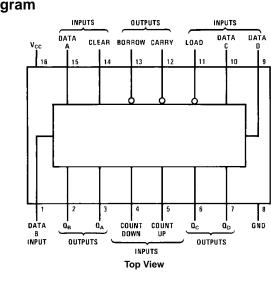
General Description

The MM74C192 and MM74C193 up/down counters are monolithic complementary MOS (CMOS) integrated circuits. The MM74C192 is a BCD counter, while the MM74C193 is a binary counter.

Counting up and counting down is performed by two count inputs, one being held high while the other is clocked. The outputs change on the positive-going transition of this clock.

These counters feature preset inputs that are set when load is a logical "0" and a clear which forces all outputs to "0" when it is at a logical "1". The counters also have carry and borrow outputs so that they can be cascaded using no external circuitry.

Features


- High noise margin: 1V guaranteed
- Tenth power TTL compatible: Drive 2 LPTTL loads
- Wide supply range: 3V to 15V
- Carry and borrow outputs for N-bit cascading
- Asynchronous clear
- High noise immunity: 0.45 V_{CC} (typ.)

Ordering Code:

Order Number	Package Number	Package Description
MM74C192N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C193M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C193N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Device also available i	n Tape and Reel Specify	by appending suffix letter "X" to the ordering code

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

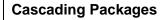
Connection Diagram

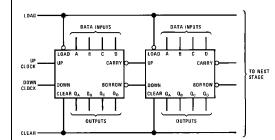
Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	-0.3V to V _{CC} + 0.3V
Operating Temperature Range (T _A)	-55°C to +125°C
Storage Temperature Range (T _S)	-65°C to +150°C
Maximum V _{CC} Voltage	18V
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V
Lead Temperature (T _A)	
(Soldering, 10 seconds)	260°C

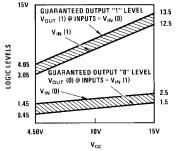
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

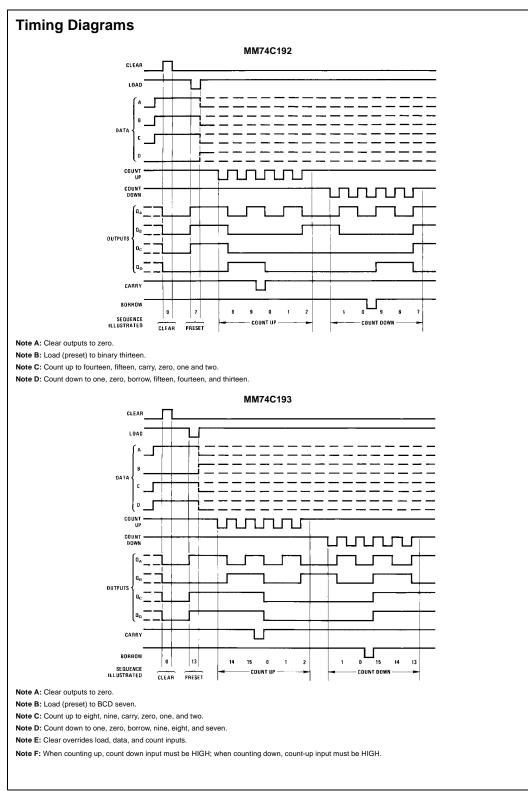

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS			•		•
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8.0			v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2.0	v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			V
		$V_{CC}=10V,I_{O}=-10\;\mu A$	9.0			v
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = 10 \ \mu A$			0.5	V
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1.0	v
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
I _{CC}	Supply Current	$V_{CC} = 15V$		0.05	300	μΑ
смоѕ то	LPTTL INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = -100 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V
OUTPUT	DRIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				
SOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$	4.75			
		$T_A = 25^{\circ}C, V_{OUT} = 0V$	-1.75			mA
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$	-8			
		$T_A = 25^{\circ}C, V_{OUT} = 0V$	-0			mA
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$	4.75			
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			mA
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$				
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	8			mA

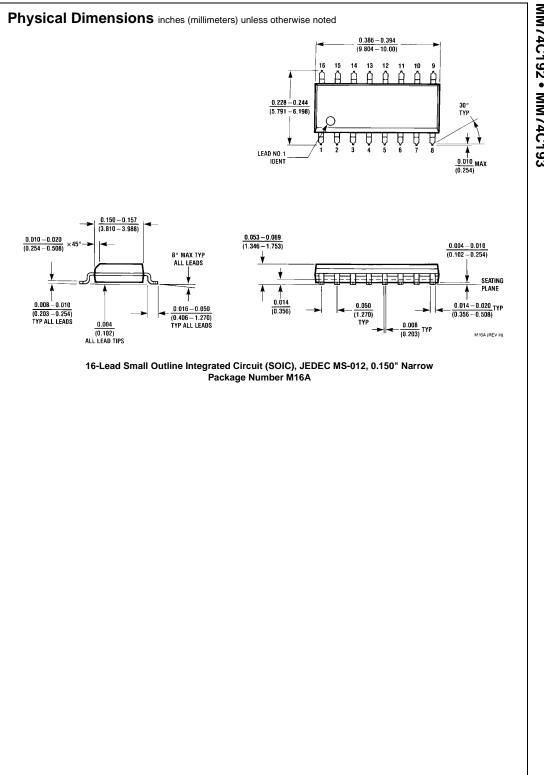

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd}	Propagation Delay	$V_{CC} = 5V$		250	400	ns	
	Time to Q from Count Up or Down	$V_{CC} = 10V$		100	160	115	
t _{pd}	Propagation Delay	$V_{CC} = 5V$		120	200	ns	
	Time to Q Borrow from Count Down	$V_{CC} = 10V$		50	80		
t _{pd}	Propagation Delay	$V_{CC} = 5V$		120	200	ns	
	Time to Carry from Count Up	$V_{CC} = 10V$		50	80		
t _S	Time Prior to Load	$V_{CC} = 5V$		100	160	ns	
	that Data Must be Present	$V_{CC} = 10V$		30	50		
t _W	Minimum Clear Pulse Width	$V_{CC} = 5V$		300	480	ns	
		$V_{CC} = 10V$		120	190		
t _W	Minimum Load Pulse Width	$V_{CC} = 5V$		100	160		
		$V_{CC} = 10V$		40	65	ns	
t _{pd0}	Propagation Delay	$V_{CC} = 5V$		300	480		
t _{pd1}	Time to Q from Load	$V_{CC} = 10V$		120	190	ns	
t _W	Minimum Count Pulse Width	$V_{CC} = 5V$		120	200	ns	
		$V_{CC} = 10V$		35	80		
f _{MAX}	Maximum Count Frequency	$V_{CC} = 5V$	2.5	4		MHz	
		$V_{CC} = 10V$	6	10			
t _r	Count Rise and Fall Time	$V_{CC} = 5V$			15	μs	
t _f		$V_{CC} = 10V$			5		
CIN	Input Capacitance	(Note 3)		5		pF	
CPD	Power Dissipation Capacitance	(Note 4)		100		pF	

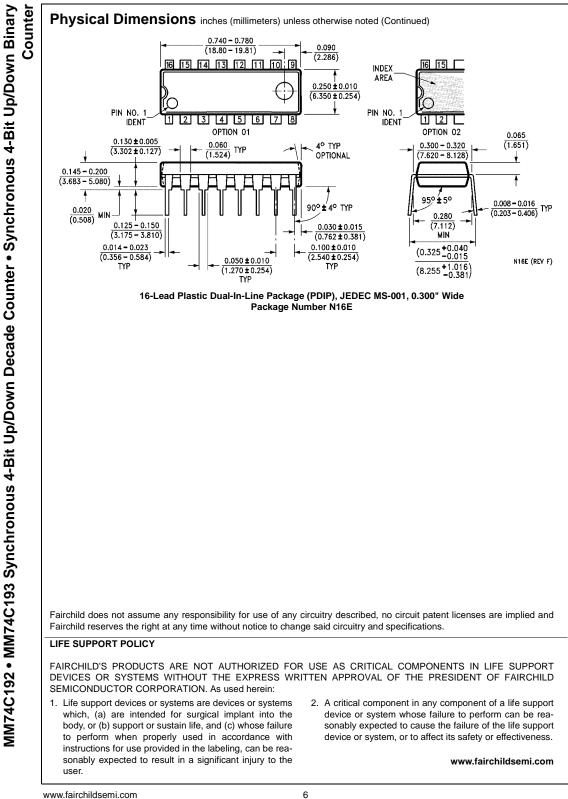
Note 2: AC Parameters are guaranteed by DC correlated testing.


Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see Application Note AN-90.




Guaranteed Noise Margin as a Function of V_{CC}



4

MM74C192 • MM74C193

