

MCP3020 MCP3021 MCP3022

PACKAGE DIMENSIONS

C2081

Equivalent Circuit

DESCRIPTION

The MCP3020, MCP3021 and MCP3022 are optically isolated triac driver devices. These devices contain a GaAs infrared emitting diode and a light activated silicon bilateral switch, which functions like a triac. This is designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 240 VAC operations.

FEATURES

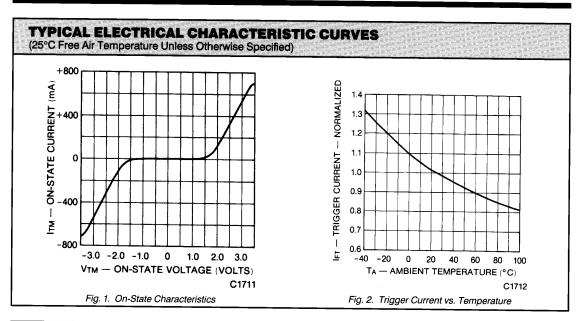
- Minimum commutating dv/dt is specified at 0.1 V/μsec
- Excellent I_{rt} stability—IR emitting diode has low degradation
 Pin for pin replacement for the MOC3020, MOC3021 and
- High isolation voltage—minimum 7500 VAC peak
- Underwriters Laboratory (UL) recognized—File #E50151

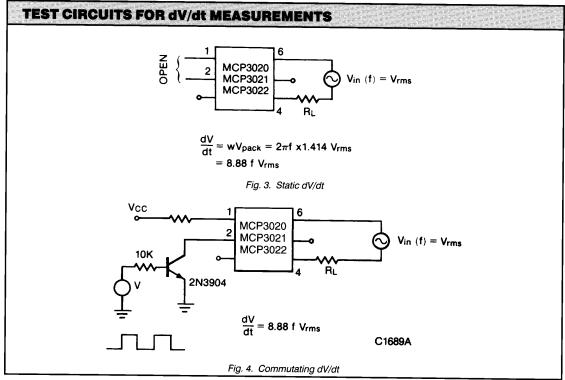
APPLICATIONS

- European applications for 240 VAC
- Triac driver
- Industrial controls
- Traffic lights
- Vending machines
- Motor control
- Solid state relay

ABSOLUTE MAXIMUM RATINGS	
TOTAL PACKAGE Storage temperature	INPUT DIODE Forward DC current 60 mA Reverse voltage 3 V Peak forward current 3 V (1 μs pulse, 300 pps) 3.0 A Power dissipation 25°C ambient 100 mW Derate linearly from 25°C 1.33 mW/°C OUTPUT DRIVER Off-state output terminal voltage 400 Volts On-state RMS current T_a =25°C 100 mA (Full cycle, 50 to 60 Hz) T_a =70°C 50 mA Peak nonrepetitive surge current 1.2 A (PW=10 ms, DC=10%) Total power dissipation @ T_a =25°C 300 mW Derate above 25°C 4.0 mW/°C

ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
INPUT DIODE Forward voltage	V _F		1.3	1.50	V	I ₌ =30 mA
Forward voltage temperature coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.8		mV/°C	
Reverse breakdown voltage	BV _R	3.0	25		V	I _R =10 μA
Junction capacitance	C,	_	50 65		pF pF	$V_F=0 V, f=1 MHz$ $V_F=1 V, f=1 MHz$
Reverse leakage current	I _R		.35	10	μΑ	V _R =3.0 V
OUTPUT DETECTOR Peak blocking current, either direction	Ірем		10	100	nA	V _{DBM} =400 V. Note 1
Peak on-state voltage, either direction	V _{TM}	_	2.0	3.0	Volts	I _{TM} =100 mA Peak


DC CHARACTER	105100	A					
DC CHARACTER	ISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
LED trigger current (current required	MCP3020	l _{FT}	_	15	30	mA	Main terminal
to latch output)	MCP3021	I _{FT}	_	8	15	mA	 voltage=3.0 V
	MCP3022	I _{FT}		5	10	mA	_
Holding current		I _H		200		μΑ	Either direction

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
dv/dt RATING Critical rate of rise of off-state voltage	dv/dt	_	15		V/μs	Static dv/dt, T _A =85°C (see Fig. 3)
Critical rate of rise of commutating voltage	dv/dt	0.1	0.2	_	V/μs	Commutating dv/dt I _{LOAD} =15 mA (see Fig. 4)

ISOLATION CHARACTERISTICS							
CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
Isolation voltage	V _{iso}	5300			V _{AC} RMS	I _{i-0} ≤1 μA, 1 minute	
	V _{iso}	7500			V _{AC} PEAK	I ₁₋₀ ≤ 1 μA, 1 minute	
Isolation resistance	R _{iso}	10"			ohms	V _{I-0} =500 VDC	
Isolation capacitance	Ciso		0.5		pF	f=1 MHz	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.