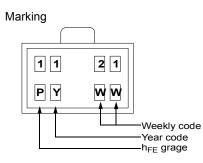
July 2005



KSB1121 PNP Epitaxial Planar Silicon Transistor

High Current Driver Applications

- Low Collector-Emitter Saturation Voltage
- · Large Current Capacity
- · Fast Switching Speed
- · Complement to KSD1621

Absolute Maximum Ratings T_a = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{CBO}	Collector-Base Voltage	-30	V
V _{CEO}	Collector-Emitter Voltage	-25	V
V _{EBO}	Emitter-Base Voltage	-6	V
I _C	Collector Current	-2	А
P _C P _C *	Collector Power Dissipation	500 1.3	mW W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C

* Mounted on Ceramic Board (250mm² x 0.8mm)

Electrical Characteristics T_a = 25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = -10μA, I _E = 0	-30			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = -1mA, I _B = 0	-25			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = -10μA, I _C = 0	-6			V
I _{CBO}	Collector Cut-off Current	V _{CB} = -20V, I _E = 0			-100	nA
I _{EBO}	Emitter Cut-off Current	V _{BE} = -4V, I _C = 0			-100	nA
h _{FE1} h _{FE2}	DC Current Gain	$V_{CE} = -2V, I_C = -0.1A$ $V_{CE} = -2V, I_C = -1.5A$	100 65		560	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = -1.5A, I _B = -75mA		-0.35	-0.6	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = -1.5A, I _B = -75mA		-0.85	-1.2	V

Electrical Characteristics	(Continued) $T_a = 25^{\circ}C$ unless otherwise noted
-----------------------------------	--

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
f _T	Current Gain Bandwidth Product	V _{CE} = -10V, I _C = -50mA		150		MHz
C _{ob}	Output Capacitance	V _{CB} = -10V, I _E = 0, f = 1MHz		32		pF
t _{ON}	Turn On Time *	V _{CC} = -12V, V _{BE} = -5V		60		ns
t _{STG}	Storage Time *	$I_{B1} = -I_{B2} = -25mA$ $I_{C} = -500mA$, $R_{I} = 24\Omega$		350		ns
t _F	Fall time *	- IC200111A, IC - 2432		25		ns

h_{FE} Classification

Classification	R	S	т	U
h _{FE1}	100 ~ 200	140 ~ 280	200 ~ 400	280 ~ 560

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
1121	KSB1121	SOT-89	13"		4,000

V_{CE}= -2V

-10

V_{CE} = -2V

-1.0

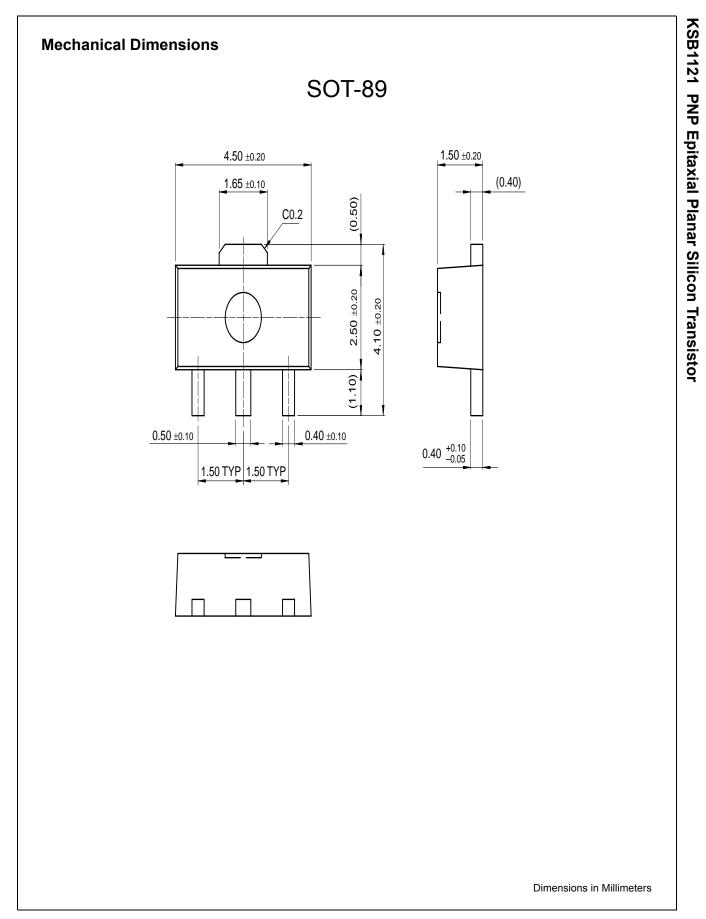

-1.2

Figure 1. Static Characteristic Figure 2. DC Current Gain 1000 $I_{B} = -200 \text{mA}$ $I_{B} = -100 \text{mA}$ $I_{B} = -50 \text{mA}$ $I_{B} = -30 \text{mA}$ -2.0 I_B = -20mA Ic[A], COLLECTOR CURRENT -1.6 h_{FE}, DC CURRENT GAIN I_B = -10mA 100 $I_B = -8mA$ -1.2 I_B = -6mA -0.8 I_B = -4mA 10 $I_{\rm p} = -2mA$ -0.4 $I_{B} = 0$ 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 0.0 -0.01 -0.1 -1 V_{CE}[V], COLLECTOR-EMITTER VOLTAGE I_C[A], COLLECTOR CURRENT Figure 3. Collector-Emitter Saturation Voltage Figure 4. Base-Emitter On Voltage -3.2 -10 $I_{\rm C}$ = 10 $I_{\rm B}$ V_{CE}(sat)[V], SATURATION VOLTAGE -2.8 Ic[A], COLLECTOR CURRENT -2.4 -1 -2.0 -1.6 -1.2 -0.1 -0.8 -0.4 -0.01 0.0 -0.2 -0.6 -0.8 -0 1 -1 -10 -0.4 Ic[A], COLLECTOR CURRENT VBE[V], BASE-EMITTER VOLTAGE Figure 5. Collector Output Capacitance Figure 6. Current Gain Bandwidth Product 1000 fi[MHz], CURRENT GAIN-BANDWIDTH PRODUCT 1000 V_{CE} = -10V I_E=0 f = 1MHz C_{ob}[pF], CAPACITANCE 100 100 10 1 └ -0.1 10 -10 -100 -0.1 -1 -1 V_{CB} [V], COLLECTOR-BASE VOLTAGE Ic[A], COLLECTOR CURRENT

Typical Performance Characteristics

www.fairchildsemi.com

-10

SuperSOT[™]-8 SyncFET[™] TinyLogic[®] TINYOPTO[™] TruTranslation[™] UHC[™] UltraFET[®] UniFET[™] VCX[™] Wire[™]

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]
Build it Now™	FRFET™	MicroFET™	QS™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™
DOME™	HiSeC™	MSX™	RapidConfigure™
EcoSPARK™	I ² C™	MSXPro™	RapidConnect™
E ² CMOS™	<i>i-Lo</i> ™	OCX™	µSerDes™
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER [®]
FACT™	IntelliMAX™	OPTOLOGIC [®]	SMART START™
FACT Quiet Series™		OPTOPLANAR™	SPM™
		PACMAN™	Stealth™
Across the board. Around the world.™		POP™	SuperFET™
		Power247™	SuperSOT™-3
Programmable Active D	roop	PowerEdge™	SuperSOT™-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	1	Rev. I