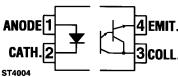


H24A1 H24A2

PACKAGE DIMENSIONS

DESCRIPTION


The H24A series consists of a gallium arsenide infrared emitting diode coupled with a silicon phototransistor. The devices are housed in a low-cost plastic package with lead spacing compatible with a dual in-line package.

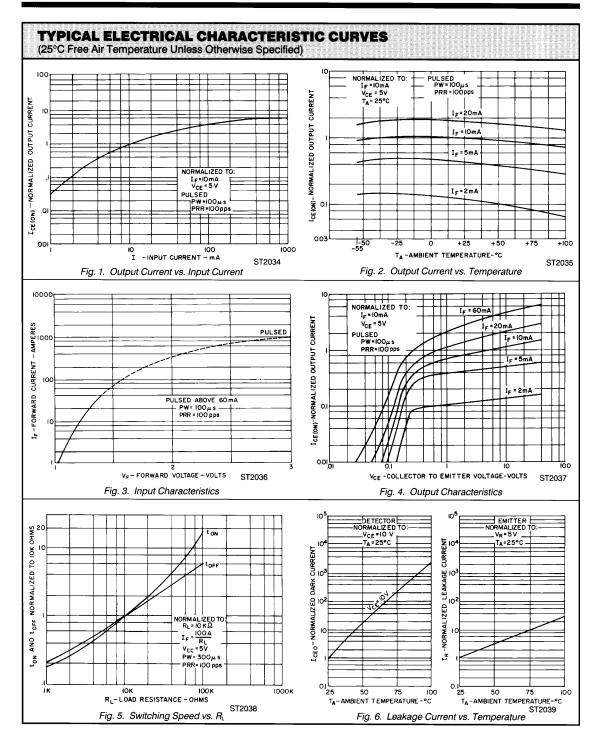
FEATURES

- 4-pin configuration
- Small package size and low cost
- UL recognized-file E51868

APPLICATIONS

- Digital logic inputs
- Microprocessor inputs
- Industrial controls

Equivalent Circuit



ELECTRICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
INPUT DIODE						
Forward voltage	$V_{\scriptscriptstyle F}$	_		1.7	V	I _F =60 mA
Reverse current	l _R			1	μA	V ₈ =3 V
Reverse breakdown voltage	V _{(BR)R}	4		<u> </u>	V	$I_{\rm H}=10~\mu{\rm A}$
Capacitance	C,	_	30		pF	V=0, f=1 MHz
OUTPUT DETECTOR Breakdown voltage Collector to emitter	BV _{c∈o}	30			٧	I _c =1 mA, I _F =0
Breakdown voltage Emitter to Collector	BV _{ECO}	7			V	I _c =100 μA, I _F =0
Collector dark current	I _{CEO}		5	100	nA	$V_{CE} = 10 \text{ V}, I_F = 0$
Capacitance	C _{CE}		3.3		pF	V _{CE} =5 V, f=1 MHz

TRANSFER CHAI	RACTERIST	rics				
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
DC CURRENT TRANSFE	R RATIO					
H24A1	lc	10.0			mA	I _F =10 mA, V _{CE} =10 V
H24A2	Ic	2.0			mA	$I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$
Saturation voltage	V _{CE(SAT)}	<u> </u>	0.1	0.4	V	$I_F = 10 \text{ mA}, I_C = 0.5 \text{ mA}$
Turn-on time	t _{on}		9		μS	$I_c=2$ mA, $V_{ce}=10$ V, $R_c=100$ Ω
Turn-off time	t _{off}		4		μS	$I_F=2$ mA, $V_{CE}=10$ V, $R_L=100$ Ω
Turn-on time	t _{on}		6.5		μS	$I_F=10$ mA, $V_{CE}=5$ V, $R_L=10$ K Ω
Turn-off time	t _{off}		165		μS	$I_F=10$ mA, $V_{CE}=5$ V, $R_L=10$ K Ω

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Surge isolation voltage	V _{iso}	6000			V _{Peak}	1 Minute
Steady-state isolation voltage	V _{iso}	5300			V _{RMS}	1 Minute
Isolation resistance	R _{iso}	1011		-	ohms	V _{I-0} =500 VDC
Isolation capacitance	C _{iso}		0.5		pF	V _{.⊙} =0, f=1 MHz

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.