

SEMICONDUCTOR

FTM3725

NPN Transistor

- This device is designed for high current, low impedance line driver applications.
- Sourced from process 26.

Absolute Maximum Ratings* $T_a=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units	
V _{CEO}	Collector-Emitter Voltage	40	V	
V _{CBO}	Collector-Base Voltage	60	V	
V _{EBO}	Emitter-Base Voltage	6.0	V	
I _C	Collector Current - Continuous	1.2	Α	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	- 55 ~ 150	°C	
	iting values above whitch the serviceability of any semiconductor device may be impair	00 .00		

NOTES:

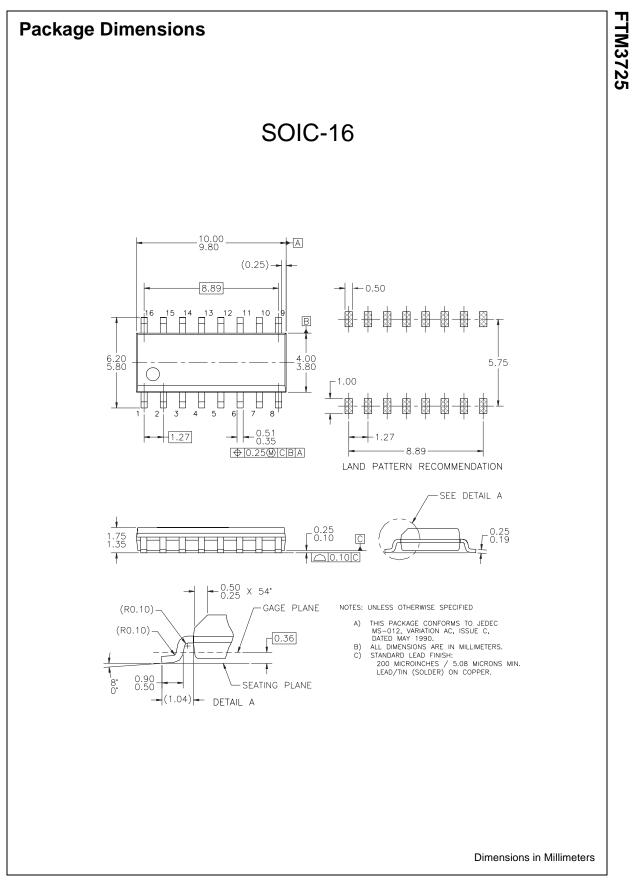
These ratings are based on a maximum junction temperature of 150 degrees C.
These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics $T_a=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Off Charact	teristics	•			•	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage *	$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0$	40			V
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{C} = 10\mu A, V_{BE} = 0$	60			V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10\mu {\rm A}, I_{\rm E} = 0$	60			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10\mu A, I_{\rm C} = 0$	6.0			V
СВО	Collector Cutoff Current	$V_{CB} = 50V, I_E = 0$			100	nA
		$V_{CB} = 50V, I_E = 0, T_a = 100^{\circ}C$			10	μA
On Charact	eristics *					
JEE	DC Current Gain	I _C = 10mA, V _{CE} = 1.0V	30			
		$I_{C} = 100 \text{mA}, V_{CE} = 1.0 \text{V}$	60		180	
		$I_{C} = 100 \text{mA}, V_{CE} = 1.0 \text{V}, T_{a} = 55^{\circ}\text{C}$	30			
		I _C = 300mA, V _{CE} = 1.0V	40			
		I _C = 500mA, V _{CE} = 1.0V	35			
		I _C = 500mA, V _{CE} = 1.0V, T _a = 55°C	20			
		$I_{C} = 800 \text{mA}, V_{CE} = 2.0 \text{V}$	20			
		$I_{C} = 1.0 \text{mA}, V_{CE} = 5.0 \text{V}$	25			
/ _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 10mA, I _B = 1.0mA			0.25	V
		I _C = 100mA, I _B = 10mA			0.26	V
		I _C = 300mA, I _B = 30mA			0.4	V
		I _C = 500mA, I _B = 50mA			0.52	V
		I _C = 800mA, I _B = 80mA			0.8	V
		I _C = 1.0mA, I _B = 100mA			0.95	V
/ _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = 10mA, I _B = 1.0mA			0.76	V
		I _C = 100mA, I _B = 10mA			0.86	V
		I _C = 300mA, I _B = 30mA			1.1	V
		I _C = 500mA, I _B = 50mA			1.2	V
		I _C = 800mA, I _B = 80mA			1.5	V
		$I_{C} = 1.0 \text{mA}, I_{B} = 100 \text{mA}$			1.7	V

FTM3725

FTM3725


Electrical Characteristics* (Continued) T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Small Sign	al Characteristics					
f _T	Current Gain Bandwidth Product	I _C = 50mA, V _{CE} = 10V, f = 100MHz 250			MHz	
C _{obo}	Output Capacitance	V _{CB} = 10V, I _E = 0, f = 1.0MHz			15	pF
C _{ibo}	Input Capacitance	V _{EB} = 0.5V, I _C = 0, f = 1.0MHz			65	pF
Switching	Characteristics					
t _{on}	Turn-on Time	V _{CC} = 30V, V _{BE} = 3.8V		20		ns
t _d	Delay Time	I _C = 500mA, I _{B1} = 50mA		10		ns
t _r	Rise Time			12		ns
t _{off}	Turn-off Time	V _{CC} = 30V, I _C = 500mA		250		ns
t _s	Storage Time	$I_{B1} = I_{B2} = 50 \text{mA}$		235		ns
t _f	Fall Time			15		ns

* Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 1.0%

Thermal Characteristics ${\rm T}_a{=}25^{\circ}{\rm C}$ unless otherwise noted

Symbol	Parameter	Max.	Units	
PD	Total Device Dissipation	1.0	W	
_	Derate above 25°C	8.0	mW/°C	
R _{θJA}	Thermal Resistance, Junction to Ambient			
	Effectine 4 Die 125 °C/		°C/W	
	Each Die	240	°C/W	

©2004 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	Power247™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
CoolFET™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
DOME™	GTO™	MICROWIRE™	QT Optoelectronics™	TinyLogic [®]
EcoSPARK™	HiSeC™	MSX™	Quiet Series™	TINYOPTO™
E ² CMOS™	I ² C™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	<i>i-</i> Lo™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect™	OCXPro™	µSerDes™	UltraFET [®]
FACT Quiet Series™		OPTOLOGIC®	SILENT SWITCHER [®]	VCX™
Across the board. Around the world.™		OPTOPLANAR™	SMART START™	
The Power Franchise [®]		PACMAN™	SPM™	
Programmable Activ		POP™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.