January 2001 Revised August 2001

FSTUD16450 Configurable 4-Bit to 20-Bit Bus Switch with -2V Undershoot Protection and Selectable Level Shifting

General Description

The Fairchild Universal Bus Switch FSTUD16450 provides 4-bit, 5-bit, 8-bit, 10-bit, 16-bit, 20-bit of high-speed CMOS TTL-compatible bus switching. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The FSTUD16450 is designed to allow "customer" configuration control of the enable connections. The device is organized as either a 4-bit, 5-bit, 10-bit or 20-bit bus switch. 8-bit and 16-bit configurations are also achievable (see Functional Description). The device's bit configuration is chosen through select pin logic. (see Truth Table). When \overrightarrow{OE}_x is LOW, Port A_x is connected to Port B_x. When \overrightarrow{OE}_x is HIGH, the switch is OPEN.

The A and B Ports are "undershoot hardened" with UHC[™] protection to support an extended range to 2.0V below ground. Fairchild's integrated "Undershoot Hardened Circuit" (UHC) senses undershoot at the I/O's, and responds by preventing voltage differentials from developing and turning on the switch.

Another key device feature is the addition of a level shifting select pin, "S₂". When S₂ is LOW, the device behaves as a standard N-MOS switch. When S₂ is HIGH, a diode to V_{CC} is integrated into the circuit allowing for level shifting between 5V inputs and 3.3V outputs.

Features

- Undershoot hardened to -2V (A and B Ports)
 Voltage level shifting
- **4**Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level
- See Applications Note AN-5008 for details
- Also packaged in plastic Fine-Pitch Ball Grid Array
 - (FBGA) (Preliminary)

Applications Note

Select pins S_0 , S_1 , S_2 are intended to be used as static user configurable control pins. The AC performance of these pins has not been characterized or tested. Switching of these select pins during system operation may temporarily disrupt output logic states and/or enable pin controls.

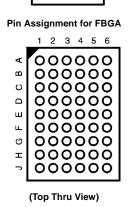
Ordering Code:

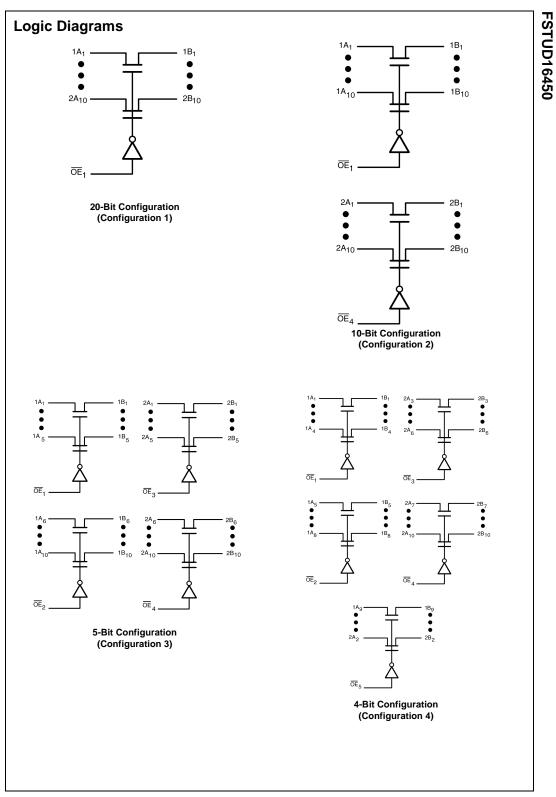
FAIRCHILD

SEMICONDUCTOR

FSTUD16450

Connection Diagrams


Pin Assignment for TSSOP							
	1	$\mathbf{\nabla}$	56				
1A ₁	2		55				
	3		55 54	~			
1A ₂ —	4		54 53	- 1B ₁			
1A ₃ — 1A ₄ —	5		52	- 1B ₂			
1A ₄ —	6		51	— 1B ₃ — 1B ₄			
1A ₆ —	7		50				
1A ₆ —	8		49	- 1B ₅			
1A ₈ —	9		49 48	- 1B ₆			
1A ₉ _	10		40	- 1B ₇			
1A ₁₀	11		47 46	1B ₈			
				— 1B ₉ — 1B ₁₀			
GND -	12		45 44				
NC —	13			- GND			
V _{CC}	14		43 42	— NC			
2A ₁ —	15						
2A ₂ _	16		41	— 2B ₁			
2A3 —	17		40	- 2B ₂			
2A ₄ —	18		39 00	— 2B ₃			
2A ₅ —	19		38	— 2B ₄			
2A ₆ _	20		37	— 2B ₅			
2A7 —	21		36	<u> </u>			
2A ₈ _	22		35	<u> </u>			
2A ₉ _	23		34	_ 2B ₈			
2A ₁₀ —	24		33	— 2B ₉			
OE ₄ -	25		32	— 2B ₁₀			
s ₀ —	26		31	$-\overline{OE}_3$			
s ₁ _	27		30	— s ₂			
NC —	28		29	- NC			
Pin A	Pin Assignment for FBGA						
_	12	34	5	6			
CBA				000			


Pin Descriptions

Pin Name	Description		
$\overline{OE}_1, \overline{OE}_2$	Bus Switch Enables		
1A, 2A	Bus A		
1B, 2B	Bus B		
S ₀ , S ₁	Bit Configuration Enables		
S ₂	Level Shifting Diode Enable		
NC	No Connect		

FBGA Pin Assignments

	1	2	3	4	5	6
Α	1A ₃	1A ₂	OE ₁	OE ₂	1B ₂	1B ₃
В	1A ₅	1A ₄	1A ₁	1B ₁	1B ₄	1B ₅
С	1A ₇	1A ₆	GND	\overline{OE}_5	1B ₆	1B ₇
D	1A ₉	1A ₈	GND	V _{CC}	1B ₈	1B ₉
Е	2A ₁	1A ₁₀	S ₀	V _{CC}	1B ₁₀	2B ₁
F	2A ₃	2A ₂	S ₁	S ₂	2B ₂	2B ₃
G	2A ₅	2A ₄	V _{CC}	GND	2B ₄	2B ₅
Н	2A ₇	2A ₆	2A ₁₀	2B ₁₀	2B ₆	2B ₇
J	2A ₉	2A ₈	OE4	\overline{OE}_3	2B ₈	2B ₉

Functional Description

The device can also be configured as an 8 and 16-bit device by grounding the unused pins in Configurations 2 and 1 respectively. The 8-bit configuration may also be achieved by tying two of the 4-bit enables from configuration together and tying the remaining enable pin $\overline{(OE)}$ HIGH.

Truth Tables (X = V_{CC} or GND)

(see Functional Description)

Select Pin							
S ₂ Mode							
L	Std. NMOS Switch						
Н	Level Shifting Diode Enabled						

Configu	ration 1	$S_0 = S_1 = L$			20-Bit Configuration
		Inputs			In most of (Our times to
OE ₁	OE ₂	OE ₃	OE ₄	OE ₅	Inputs/Outputs
L	Х	Х	Х	Х	$1A_{1-10} = 1B_{1-10}, 2A_{1-10} = 2B_{1-10}$
Н	Х	Х	Х	Х	Z

Configu	Configuration 2 $S_0 = L, S_1 = H$				10-Bit Configuration			
		Inputs		Inputs/Outputs				
OE ₁	OE ₂	OE ₃	OE ₄	OE ₅	$1A_{1-10} = 1B_{1-10}$	$2A_{1-10} = 2B_{1-10}$		
L	Х	Х	L	Х	$1A_X = 1B_X$	$2A_X = 2B_X$		
L	Х	Х	Н	Х	$1A_X = 1B_X$	Z		
Н	Х	Х	L	Х	Z	$2A_X = 2B_X$		
Н	Х	Х	Н	Х	Z	Z		

Cor	Configuration 3 $S_0 = H, S_1 = L$				5-Bit Configuration					
		Inputs			Inputs/Outputs					
OE ₁	OE ₂	OE ₃	OE ₄	OE ₅	1A ₁₋₅ , 1B ₁₋₅	1A ₆₋₁₀ , 1B ₆₋₁₀	2A ₁₋₅ , 2B ₁₋₅	2A ₆₋₁₀ , 2B ₆₋₁₀		
L	L	L	L	Х	$1A_x = 1B_x$	$1A_y = 1B_y$	$2A_x = 2B_x$	$2A_y = 2B_y$		
L	L	L	Н	Х	$1A_x = 1B_x$	$1A_y = 1B_y$	$2A_x = 2B_x$	Z		
L	L	Н	L	Х	$1A_x = 1B_x$	$1A_y = 1B_y$	Z	$2A_y = 2B_y$		
L	L	Н	Н	Х	$1A_x = 1B_x$	$1A_y = 1B_y$	Z	Z		
L	Н	L	L	Х	$1A_x = 1B_x$	Z	$2A_x = 2B_x$	$2A_y = 2B_y$		
L	Н	L	Н	Х	$1A_x = 1B_x$	Z	$2A_x = 2B_x$	Z		
L	Н	Н	L	Х	$1A_x = 1B_x$	Z	Z	$2A_y = 2B_y$		
L	Н	Н	Н	Х	$1A_x = 1B_x$	Z	Z	Z		
Н	L	L	L	Х	Z	$1A_y = 1B_y$	$2A_x = 2B_x$	$2A_y = 2B_y$		
Н	L	L	Н	Х	Z	$1A_y = 1B_y$	$2A_x = 2B_x$	Z		
Н	L	Н	L	Х	Z	$1A_y = 1B_y$	Z	$2A_y = 2B_y$		
Н	L	Н	Н	Х	Z	$1A_y = 1B_y$	Z	Z		
Н	Н	L	L	Х	Z	Z	$2A_x = 2B_x$	$2A_y = 2B_y$		
Н	Н	L	Н	Х	Z	Z	$2A_x = 2B_x$	Z		
Н	Н	Н	L	Х	Z	Z	Z	$2A_y = 2B_y$		
Н	Н	Н	Н	Х	Z	Z	Z	Z		

Con	figurati	on 4	S ₀ = 5	S ₁ = H		4-	Bit Configurati	on	
		Inputs					Inputs/Outputs	5	
OE ₁	OE ₂	OE ₃	OE ₄	OE ₅	1A ₁₋₄ , 1B ₁₋₄	1A ₅₋₈ , 1B ₅₋₈	2A ₃₋₆ , 2B ₃₋₆	2A ₇₋₁₀ , 2B ₇₋₁₀	1A ₉₋₁₀ , 2B ₉₋₁ 2A ₁₋₂ , 2B ₁₋₂
L	L	L	L	L	$1A_x = 1B_x$	$1A_y = 1B_y$	$2A_{x} = 2B_{x}$	$2A_y = 2B_y$	$1A_z = 1B_z$ $2A_z = 2B_z$
L	L	L	L	Н	$1A_x = 1B_x$	$1A_y = 1B_y$	$2A_x = 2B_x$	$2A_y = 2B_y$	Z
L	L	L	н	L	$1A_x = 1B_x$	$1A_y = 1B_y$	$2A_x = 2B_x$	z	$1A_z = 1B_z$ $2A_z = 2B_z$
L	L	L	Н	Н	$1A_x = 1B_x$	$1A_y = 1B_y$	$2A_x = 2B_x$	Z	Z
L	L	н	L	L	$1A_x = 1B_x$	$1A_y = 1B_y$	Z	$2A_y = 2B_y$	$1A_z = 1B_z$ $2A_z = 2B_z$
L	L	Н	L	Н	$1A_x = 1B_x$	$1A_y = 1B_y$	Z	$2A_y = 2B_y$	Z
L	L	н	н	L	$1A_x = 1B_x$	$1A_y = 1B_y$	Z	Z	$1A_z = 1B_z$ $2A_z = 2B_z$
L	L	Н	Н	Н	$1A_x = 1B_x$	$1A_y = 1B_y$	Z	Z	Z
L	Н	L	L	L	$1A_x = 1B_x$	Z	$2A_{x} = 2B_{x}$	$2A_y = 2B_y$	$1A_z = 1B_z$ $2A_z = 2B_z$
L	Н	L	L	Н	$1A_x = 1B_x$	Z	$2A_x = 2B_x$	$2A_y = 2B_y$	Z
L	Н	L	Н	L	$1A_x = 1B_x$	Z	$2A_x = 2B_x$	Z	$1A_z = 1B_z$ $2A_z = 2B_z$
L	Н	L	Н	Н	$1A_x = 1B_x$	Z	$2A_x = 2B_x$	Z	Z
L	Н	н	L	L	$1A_x = 1B_x$	Z	Z	$2A_y = 2B_y$	$1A_z = 1B_z$ $2A_z = 2B_z$
L	Н	Н	L	Н	$1A_x = 1B_x$	Z	Z	$2A_y = 2B_y$	Z
L	Н	н	Н	L	$1A_x = 1B_x$	Z	Z	Z	$1A_z = 1B_z$ $2A_z = 2B_z$
L	Н	Н	Н	Н	$1A_x = 1B_x$	Z	Z	Z	Z
н	L	L	L	L	Z	$1A_y = 1B_y$	$2A_x = 2B_x$	$2A_y = 2B_y$	$1A_z = 1B_z$ $2A_z = 2B_z$
Н	L	L	L	Н	Z	$1A_y = 1B_y$	$2A_x = 2B_x$	$2A_y = 2B_y$	Z
н	L	L	н	L	Z	$1A_y = 1B_y$	$2A_{x} = 2B_{x}$	z	$1A_z = 1B_z$ $2A_z = 2B_z$
Н	L	L	Н	Н	Z	$1A_y = 1B_y$	$2A_x = 2B_x$	Z	Z
н	L	н	L	L	Z	$1A_y = 1B_y$	Z	$2A_y = 2B_y$	$1A_z = 1B_z$ $2A_z = 2B_z$
Н	L	Н	L	Н	Z	$1A_y = 1B_y$	Z	$2A_y = 2B_y$	Z
н	L	н	н	L	Z	$1A_y = 1B_y$	Z	z	$1A_z = 1B_z$ $2A_z = 2B_z$
Н	L	Н	Н	Н	Z	$1A_y = 1B_y$	Z	Z	Z
н	Н	L	L	L	Z	Z	$2A_x = 2B_x$	$2A_y = 2B_y$	$1A_z = 1B_z$ $2A_z = 2B_z$
Н	Н	L	L	Н	Z	Z	$2A_x = 2B_x$	$2A_y = 2B_y$	Z
Н	н	L	н	L	Z	Z	$2A_x = 2B_x$	Z	$1A_z = 1B_z$ $2A_z = 2B_z$
Н	Н	L	Н	Н	Z	Z	$2A_x = 2B_x$	Z	Z
н	н	н	L	L	Z	Z	Z	$2A_y = 2B_y$	$1A_z = 1B_z$ $2A_z = 2B_z$
Н	Н	Н	L	Н	Z	Z	Z	$2A_y = 2B_y$	Z
н	Н	Н	Н	L	Z	Z	Z	Z	$1A_z = 1B_z$ $2A_z = 2B_z$
Н	Н	Н	Н	Н	Z	Z	Z	Z	Z

FSTUD16450

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V_S) (Note 3)	-2.0V to +7.0V
DC Input Control Pin Voltage	
(V _{IN}) (Note 4)	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) $V_{IN} < 0V$	–50 mA
DC Output (I _{OUT}) Current	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 °C

Recommended Operating Conditions (Note 5)

Power Supply Operating (V _{CC)}	4.0V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Free Air Operating Temperature (T _A)	-40 °C to +85 °C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: V_S is the voltage observed/applied at either the A or B Ports across the switch.

Note 4: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 5: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

		Vcc	TA =	-40 °C to +	85 °C	Units	
Symbol	Parameter	(V)	Min	Typ (Note 6)	Max		Conditions
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	I _{IN} = -18 mA
VIH	HIGH Level Input Voltage	4.0-5.5	2.0			V	$IF\ S_{2}=HIGH 4.5V\leqV_{CC}\leq5.5V$
V _{IL}	LOW Level Input Voltage	4.0-5.5			0.8	V	$IF\ S_{2}=HIGH 4.5V\leqV_{CC}\leq5.5V$
V _{OH}	HIGH Level Output Voltage	4.5-5.5		See Figure	4	V	$S_2 = V_{CC}$
l _l	Input Leakage Current	5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
		0			10	μΑ	V _{IN} = 5.5V
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_{IN} = 0V$, $I_{IN} = 64$ mA, $S_2 = 0V$ or V_{CC}
	(Note 7)	4.5		4	7	Ω	$V_{IN} = 0V$, $I_{IN} = 30$ mA, $S_2 = 0V$ or V_{CC}
		4.5		8	12	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}, S_2 = 0V$
		4.0		11	20	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}, S_2 = 0V$
		4.5		35	50	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}, S_2 = V_{CC}$
I _{CC}	Quiescent Supply Current				3	μΑ	$S_2 = GND$, $V_{IN} = V_{CC}$ or GND , $I_{OUT} = 0$
		5.5			10	μΑ	$S_2 = V_{CC}, \overline{OE}_x = V_{CC}, V_{IN} = V_{CC} \text{ or GND}, I_{OUT} = 0$
					1.5	mA	$S_2 = V_{CC}, \overline{OE}_x = GND, V_{IN} = V_{CC} \text{ or } GND, I_{OUT} = 0$
ΔI_{CC}	Increase in I _{CC} per Input				2.5	mA	One Input at 3.4V Other Inputs at V_{CC} or GND, $S_2 = 0V$
		5.5			4.0	mA	One Input at 3.4V Other Inputs at V_{CC} or GND, $S_2 = V_{CC}$
V _{IKU}	Voltage Undershoot	5.5			-2.0	V	$0.0 \text{ mA} \ge I_{\text{IN}} \ge -50 \text{ mA}$ $\overline{\text{OE}}_{v} = 5.5 \text{V}$

Note 6: Typical values are at V_{CC} = 5.0V and T_A = +25 $^\circ C$

Note 7: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter .	$T_A = -40$ °C to +85 °C, C _L = 50pF, RU = RD = 500 Ω				Units	Conditions	Figure
		$V_{CC}=4.5-5.5V$		$V_{CC} = 4.0V$		Units	$(S_2 = 0V)$	Number
		Min	Max	Min	Max			
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus (Note 8)		0.25		0.25	ns	V _I = OPEN	Figures 2, 3
t _{PZH} , t _{PZL}	Output Enable Time	1.5	6.5		7.0	ns	$V_I = 7V$ for t_{PZL} $V_I = OPEN$ for t_{PZH}	Figures 2, 3
t _{PHZ} , t _{PLZ}	Output Disable Time	1.5	6.7		7.2	ns	$V_I = 7V$ for t_{PLZ} Fi $V_I = OPEN$ for t_{PHZ}	
t _{PZH} , t _{PZL}	$S_{el} (S_{0, 1})$ to Output Enable Time	1.5	7.0		7.5	ns	$V_I = 7V$ for t_{PZL} Fi $V_I = OPEN$ for t_{PZH}	
t _{PHZ} , t _{PLZ}	$S_{el} (S_{0, 1})$ to Output Disable Time	1.5	7.5		7.7	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures 2, 3

Note 8: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

AC Electrical Characteristics: Translating Diode

Symbol	Parameter	$\label{eq:tau} \begin{split} T_{A} &= -40 ~^{\circ}\text{C to } +85 ~^{\circ}\text{C}, \\ C_{L} &= 50\text{pF}, ~\text{RU} = \text{RD} = 500\Omega \\ \hline V_{CC} &= 4.5 - 5.5V \end{split}$		Units	Conditions $(S_2 = V_{CC})$	Figure Number
		Min	Max			
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus (Note 9)		0.25	ns	V _I = OPEN	Figures 2, 3
t _{PZH} , t _{PZL}	Output Enable Time	1.5	10.0	ns	$V_I = 7V$ for t_{PZL} $V_I = OPEN$ for t_{PZH}	Figures 2, 3
t _{PHZ} , t _{PLZ}	Output Disable Time	1.5	9.0	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures 2, 3
t _{PZH} , t _{PZL}	$S_{el} (S_{0, 1})$ to Output Enable Time	1.5	11.0	ns	$V_I = 7V$ for t_{PZL} $V_I = OPEN$ for t_{PZH}	Figures 2, 3
t _{PHZ} , t _{PLZ}	S_{el} ($S_{0, 1}$) to Output Disable Time	1.5	10.0	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures 2, 3

Note 9: This parameter is guaranteed by design but is not tested. This bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 10)

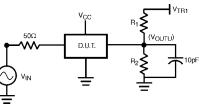
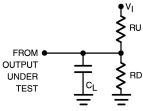
Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	4		pF	$V_{CC} = 5.0V, V_{IN} = 0V$
C _{I/O}	Input/Output Capacitance "OFF State"	8		pF	$V_{CC}, \overline{OE} = 5.0V, V_{IN} = 0V$

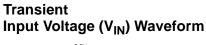
Note 10: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.

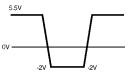
Undershoot Characteristic (Note 11)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{OUTU}	Output Voltage During Undershoot	2.5	V _{OH} – 0.3		V	S ₂ = 0V, Figure 1
		TBD	TBD		V	$S_2 = V_{CC}$

Note 11: This test is intended to characterize the device's protective capabilities by maintaining output signal integrity during an input transient voltage undershoot event.

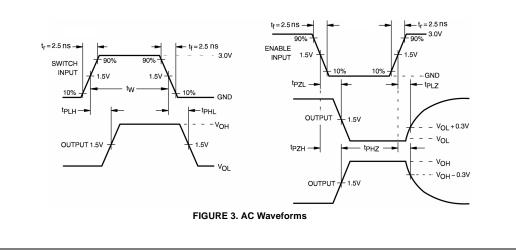



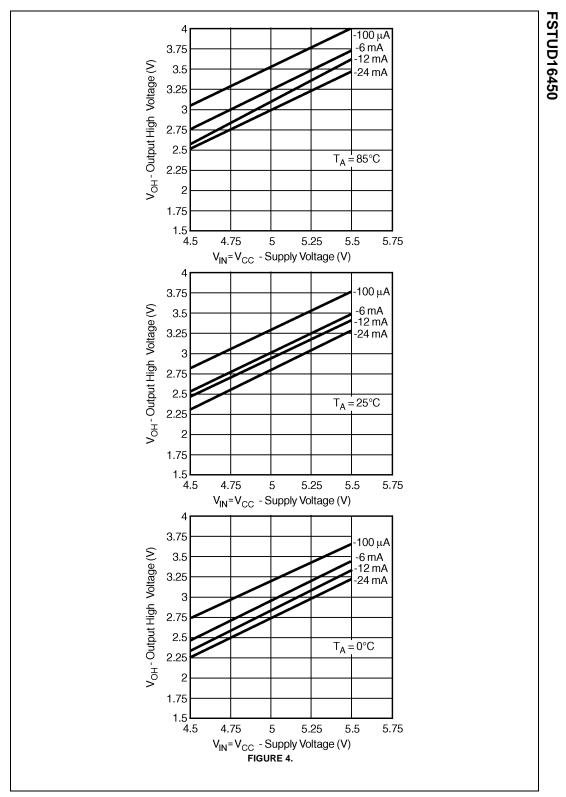

FIGURE 1.

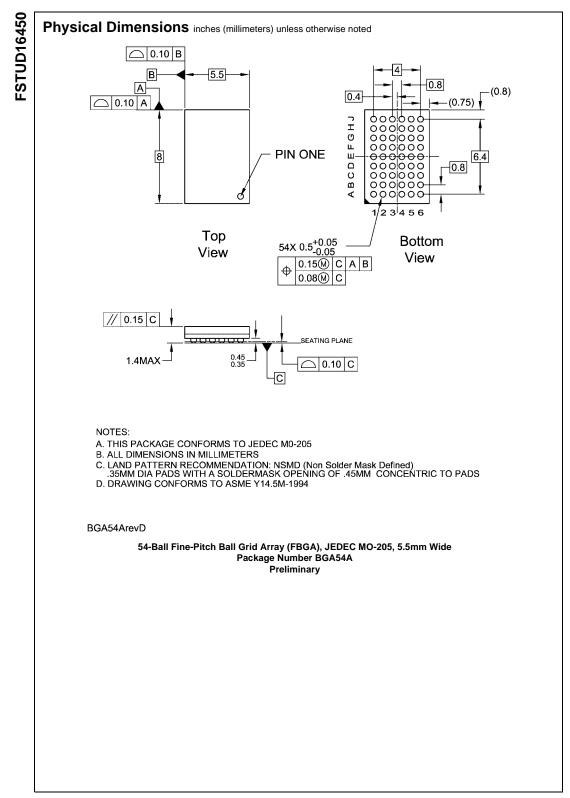

Device Test Conditions

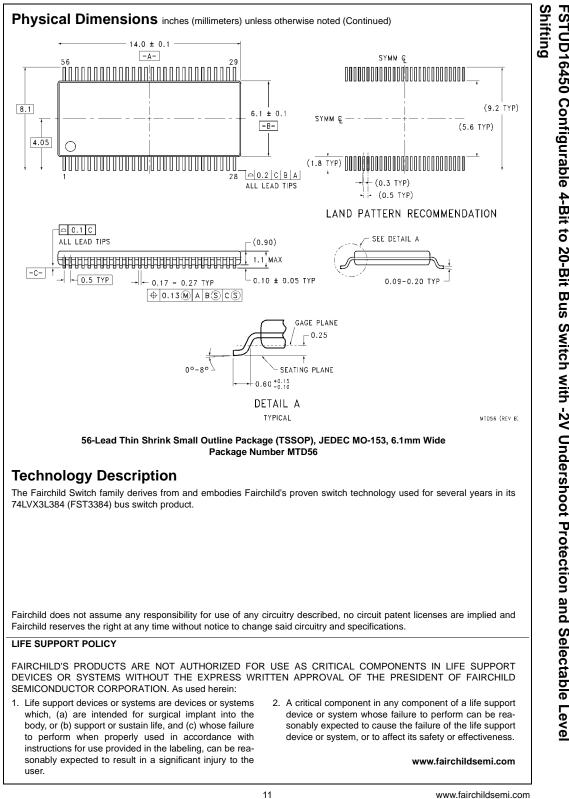
Parameter	Value	Units		
V _{IN}	see Waveform	V		
$R_1 = R_2$	100K	Ω		
V _{TRI}	11.0	V		
V _{CC}	5.5	V		

AC Loading and Waveforms








Note: Input driven by 50Ω source terminated in 50Ω Note: C_L includes load and stray capacitance Note: Input Frequency = 1.0 MHz, t_W = 500 ns

FSTUD16450 Configurable 4-Bit to 20-Bit Bus Switch with -2V Undershoot Protection and Selectable Level