

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage (V_{1}) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current (I_{N}) with $\mathrm{V}_{\mathrm{I}}<0$	
	-20 mA
DC Output (10) Sink Current	120 mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	0.5W

Recommended Operating Conditions

Supply Voltage (V_{CC})
4.0 V to 5.5 V

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical operated at these limits. The parametric values defined in the Electrical The "Recommended Operating Conditions" table will define the conditions or actual device operation
Note 2: The input and output negative voltage ratings may be exceeded if he input and output diode current ratings are observed.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min		Max		
$\mathrm{V}_{\text {IK }}$	Maximum Clamp Diode Voltage	4.75			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Minimum High Level Input Voltage	4.75-5.25	2.0			V	
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	4.75-5.25			0.8	V	
IN	Maximum Input Leakage Current	0			10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.25 \mathrm{~V}$
		5.25			± 1		
I_{OZ}	Maximum 3-STATE I/O Leakage	5.25			± 10	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
l OS	Short Circuit Current	4.75	100			mA	$\mathrm{V}_{1}(\mathrm{~A}), \mathrm{V}_{1}(\mathrm{~B})=0 \mathrm{~V}, \mathrm{~V}_{1}(\mathrm{~B}), \mathrm{V}_{1}(\mathrm{~A})=4.75 \mathrm{~V}$
R_{ON}	Switch On Resistance (Note 4)	4.75		5	7	Ω	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=30 \mathrm{~mA}$
				10	15	Ω	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=15 \mathrm{~mA}$
I_{CC}	Maximum Quiescent Supply Current	5.25		0.2	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0$
$\mathrm{II}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {cc }}$ per Input (Note 5)	5.25			2.5	mA	$\mathrm{V}_{\mathrm{IN}}=3.15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$, Per Control Input

Note 4: Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
Note 5: Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.15 \mathrm{~V}$, control inputs only). A and B pins do not contribute to I_{CC}.

AC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			Units
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Data Propagation Delay A_{n} to C_{n}, D_{n} or B_{n} to D_{n}, C_{n} (Note 7)	4.75			0.25	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Switch Exchange Time $B X$ to $A_{n}, B_{n}, C_{n}, D_{n}$	4.75	1.5		6.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Switch Enable Time $\overline{B E}$ to A_{n}, B_{n}, C_{n} or D_{n}	4.75	1.5		6.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Switch Disable Time $\overline{B E}$ to A_{n}, B_{n}, C_{n}, or D_{n}	4.75	1.5		5.5	ns

Note 7: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On resistance of the switch and the load capacitance. The time constant for the switch and alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Input Capacitance	4	6	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ (OFF)	Input/Output Capacitance	9	13	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 8: Capacitance is characterized but not tested.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC24

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

