FAIRCHILD

SEMICONDUCTOR

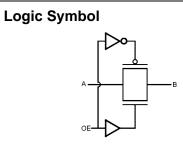
FSAT66 Low Voltage Single SPST Normally Open Analog Switch with TTL Compatible Control Input

General Description

The FSAT66 is a high speed single pole/single throw normally open Analog Switch with a TTL compatible control input and is fabricated on a sub-micron CMOS process.

The low On Resistance of the switch allows input to be connected to output with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 1-bit switch with a switch enable (OE) signal. When OE is HIGH, the switch is on and Port A is connected to Port B. When OE is LOW, the switch is open and a high-impedance state exists between the two ports.

Features


- Space saving SC70 5-lead package
- Ultra small MicroPak[™] leadless package
- Broad V_{CC} Operating Range 1.65V to 5.5V
- Rail-to-rail signal handling
- $\blacksquare~5\Omega$ switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control input compatible with TTL input levels
- >250 MHz–3dB bandwidth

Ordering Code:

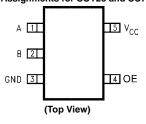
		Product		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		
FSAT66M5X (Preliminary)	MA05B	AT66	5-Lead SOT23, JEDEC MO-178, 1.6mm	3K Units on Tape and Reel
FSAT66P5X	MAA05A	T66	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3K Units on Tape and Reel
FSAT66L6X	MAC06A	EF	6-Lead MicroPak, 1.0mm Wide	5K Units on Tape and Reel

MicroPak[™] is a trademark of Fairchild Semiconductor Corporation.

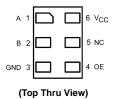
FSAT66

Pin Descriptions

Pin Names	Description
OE	Switch Enable Input
A	Bus A I/O
В	Bus B I/O
NC	No Connect


Function Table

	OE	B ₀	Function		
	L	High-Z State	Disconnect		
	Н	A ₀	Connect		
H = HIG	H Logic Level	L = LOW Logic Le	vel		


Pin Assignments for SOT23 and SC70

Connection Diagrams

Analog Symbol

Pad Assignments for MicroPak

Absolute Maximum Ratings(Note 1)

Recommended Operating	
Conditions (Note 3)	

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S)	–0.5V to $V_{CC}^{} + 0.5V$
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current	
@ (I _{IK}) V _{IN} < 0V	–50 mA
DC Output (I _{OUT}) Sink Current	±128 mA
DC V _{CC} or Ground Current (I_{CC}/I_{GND})	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Lead Temperature	
under Bias (T _J)	+150°C
Junction Lead Temperature (TL)	
(Soldering, 10 Seconds)	+260°C
Power Dissipation (P _D) @ +85°C	
SC70-5	150 mW
MicroPak-6	200 mW

Power Supply Voltage (V _{CC})	1.65V to 5.5V
Control Input Voltage (VIN)	0V to 5.5V
Switch Input Voltage (VIN)	0V to V _{CC}
Switch Output Voltage (V _{OUT})	0V to V _{CC}
Input Rise and Fall Time (t_r, t_f)	
Control Input $V_{CC} = 2.3V$ to 3.6V	0 ns/V to 10 ns/V
Control Input $V_{CC} = 4.5V$ to 5.5V	0 ns/V to 5 ns/V
Switch I/O	0 ns/V to DC
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	
SC70-5	425°C/Watt
MicroPak-6	325°C/Watt
Note 1: The "Absolute Maximum Ratings" are those	se values beyond which

FSAT66

the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

•		Vcc	T _A = ·	–40°C to	+85°C	$T_A = +25^{\circ}C$				
Symbol	Parameter	(V)	Min	Typ (Note 4)	Max	Min	Тур	Max	Units	Conditions
VIH	HIGH Level Input	4.5 to 5.5	2.0						v	
	Voltage	1.65 to 3.6	(0.25 V _{CC} +	+ 0.75)					Ť	
VIL	LOW Level Input	4.5 to 5.5			0.8				v	
	Voltage	1.65 to 3.6			0.165 V _{CC}				Ň	
I _{IN}	Control Input	0 to 5.5			±1.0				μA	0 ≤ V _{IN} ≤ 5.5V
	Leakage Current	0 10 3.5			1.0				μΛ	0 ≤ VIN ≤ 5.5V
I _{OFF}	OFF Leakage Current	1.65 to 5.5			±10.0				μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance			3.0	7.0					$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$
	(Note 5)	4.5		5.0	12.0				1	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
				7.0	15.0				1	$V_{IN} = 4.5V, I_{IN} = 30 \text{ mA}$
		3.0		4.0	9.0				1	$V_{IN} = 0V, I_{IN} = 24 \text{ mA}$
		5.0		10.0	20.0				Ω	$V_{IN} = 3V$, $I_{IN} = 24$ mA
		2.3		5.0	12.0				1	$V_{IN} = 0V, I_{IN} = 8 \text{ mA}$
		2.5		13.0	30.0				1	$V_{IN} = 2.3V, I_{IN} = 8 \text{ mA}$
		1.65		7.0	28.0				1	$V_{IN} = 0V$, $I_{IN} = 4 \text{ mA}$
				25.0	60.0				1	V _{IN} = 1.65V, I _{IN} = 4 mA
R _{flat}	On Resistance Flatness	5.0					6.0			$I_A = -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	(Note 5)(Note 6)	3.3					12.0		Ω	$I_A = -24 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	(Note 7)	2.5					28.0		52	$I_A = -8 \text{ mA}, 0 \le V_{Bn} \le V_{CC}$
		1.8					125		1	$I_A = -4 \text{ mA}, 0 \le V_{Bn} \le V_{CC}$
I _{CC}	Quiescent Supply Current	1.65 to 5.5			10.0				μA	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0$

Note 4: All typical values are at the specified V_{CC}, and T_A = 25°C.

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 6: Parameter is characterized but not tested in production.

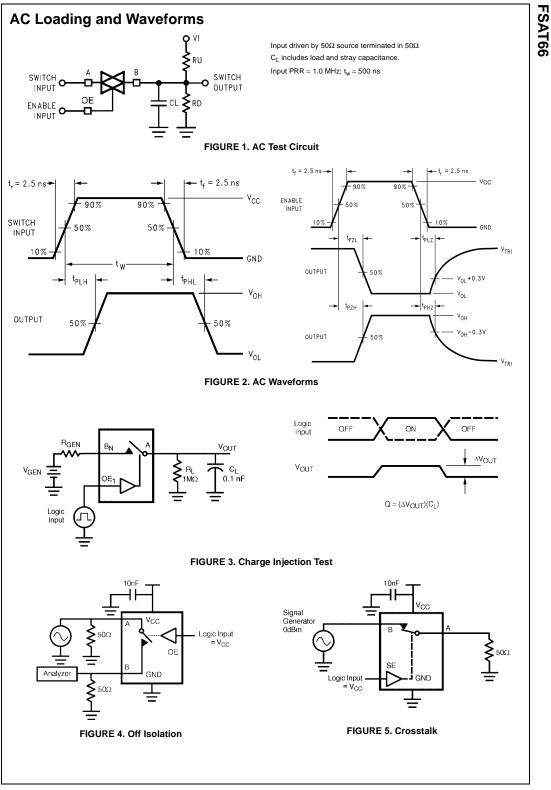
Note 7: Flatness is defined as the difference between the minimum and maximum value of On Resistance over the specified range of conditions.

FSAT66

AC Electrical Characteristics

		v _{cc}	TA	= −40°C to +8	5°C			Figure	
Symbol	Parameter	(V)	Min	Typ (Note 8)	Max	Units	Conditions	Number	
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus	1.65 to 1.95		2.0	4.3				
	(Note 9)	2.3 to 2.7		1.1	2.5	ns	V _{IN} = OPEN	Figures	
		3.0 to 3.6		0.7	1.5	115		1, 2	
		4.5 to 5.5		0.35	1.0				
t _{PZL} , t _{PZH}	Output Enable Time	1.65 to 1.95	1.5	4.0	12.0				
		2.3 to 2.7	1.2	2.5	7.0	1	1	$V_{IN} = 2 \times V_{CC}$ for t_{PZL}	Figures
		3.0 to 3.6	0.8	2.0	5.5	ns	$V_{IN} = 0V$ for t_{PZH}	1, 2	
		4.5 to 5.5	0.5	1.5	4.5	1			
t _{PLZ} , t _{PHZ}	Output Disable Time	1.65 to 1.95	2.5	7.5	15.0				
		2.3 to 2.7	2.0	5.5	9.0	ns	$V_{IN} = 2 \times V_{CC}$ for t_{PLZ}	Figures	
		3.0 to 3.6	1.5	4.5	7.0	- 115	$V_{IN} = 0V$ for t_{PHZ}	1, 2	
		4.5 to 5.5	1.0	3.5	5.5				
Q	Charge Injection (Note 10)	1.65 to 5.5		0.05		рС	$C_L = 0.1 \text{ nF}, V_{GEN} = 0V,$	Figure 3	
							$R_{GEN} = 0 \ \Omega, f = 1 \ MHz$	r igure 5	
OIRR	Off Isolation (Note 11)	1.65 to 5.5		-50.0		dB	$R_L = 50 \ \Omega, \ C_L = 5 \ pF,$	Ciaura 4	
							f = 10 MHz	Figure 4	
BW	-3dB Bandwidth	1.65 to 5.5		>250		MHz	$R_L = 50 \Omega$	Figure 5	
THD	Total Harmonic Distortion					1	$R_L = 600\Omega$		
	(Note 8)	5.0		.011		%	0.5 V _{P-P}		
							f = 600 Hz to 20 KHz		

Note 8: All typical values are at the specified V_{CC}, and T_A = 25°C.

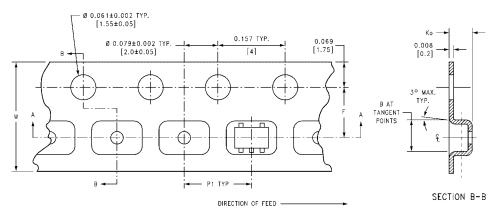

Note 9: This parameter is guaranteed by design but is not tested. The switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

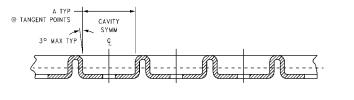
Note 10: Guaranteed by design.

Note 11: Off Isolation = 20 $\log_{10} [V_A/V_{Bn}]$

Capacitance

Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	2.0		pF	$V_{CC} = 0V$
CI/O OFF	Input/Output Capacitance	6.0		pF	$V_{CC} = 5.0V, OE = 0.0V$
CI/O ON	Input/Output Capacitance	12.0		pF	$V_{CC} = 5.0V, OE = V_{CC}$

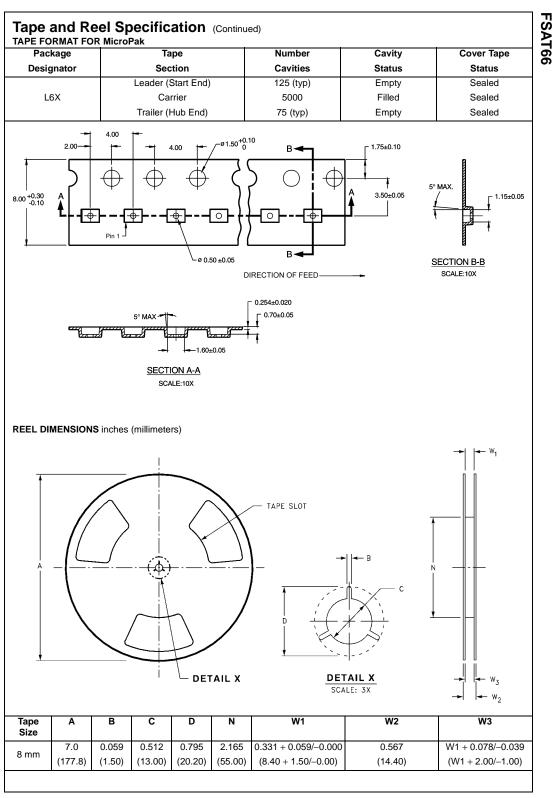


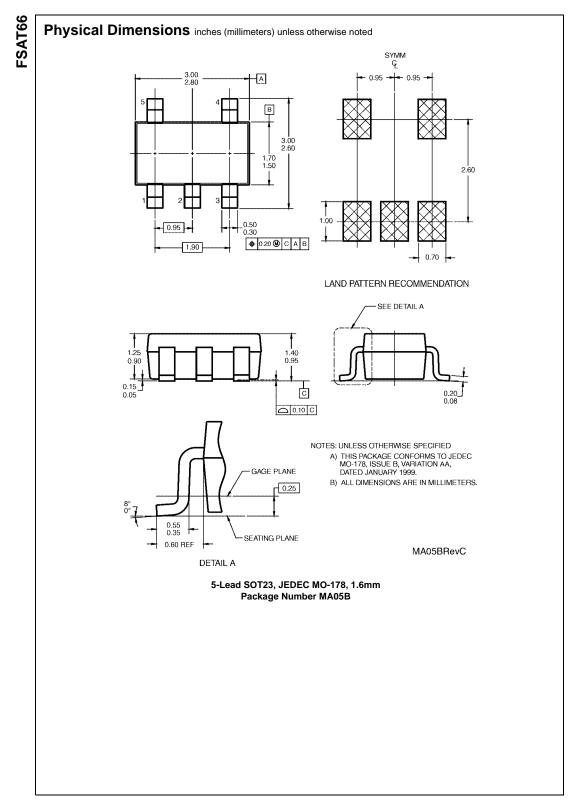

Tape and Reel Specification

TAPE FORMAT FOR SOT23, SC70

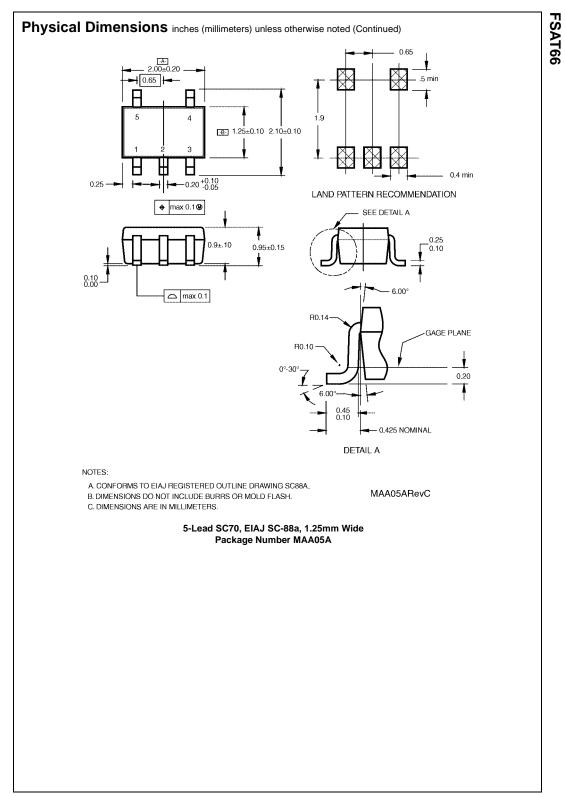
TAPE FORMAT FOR	APE FORMAT FOR SOT23, SC/0									
Package	Таре	Number	Cavity	Cover Tape						
Designator	Section	Cavities	Status	Status						
	Leader (Start End)	125 (typ)	Empty	Sealed						
M5X, P5X	Carrier	3000	Filled	Sealed						
	Trailer (Hub End)	75 (typ)	Empty	Sealed						

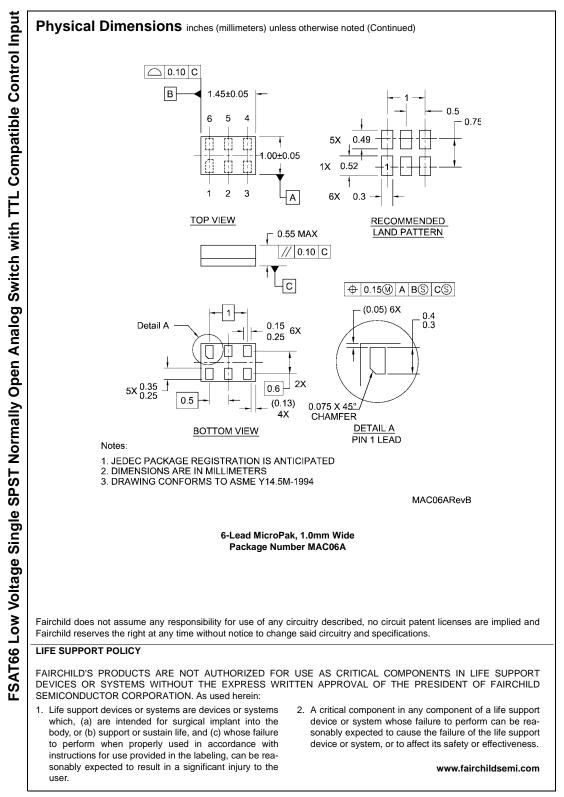
TAPE DIMENSIONS inches (millimeters)




SECTION A-A

K	
P	R 1.181 MIN. [30]
Δ	


BEND RADIUS NOT TO SCALE


Package	Tape Size	DIM A	DIM B	DIM F	DIM K ₀	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
3070-5 8	0 11111	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT22 5	9 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
SOT23-5	8 mm	(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

8

