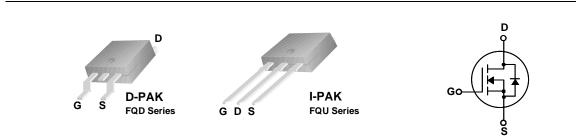
FAIRCHILD

SEMICONDUCTOR®

FQD6N50C / FQU6N50C N-Channel QFET MOSFET 500 V, 4.5 A, 1.2 Ω

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

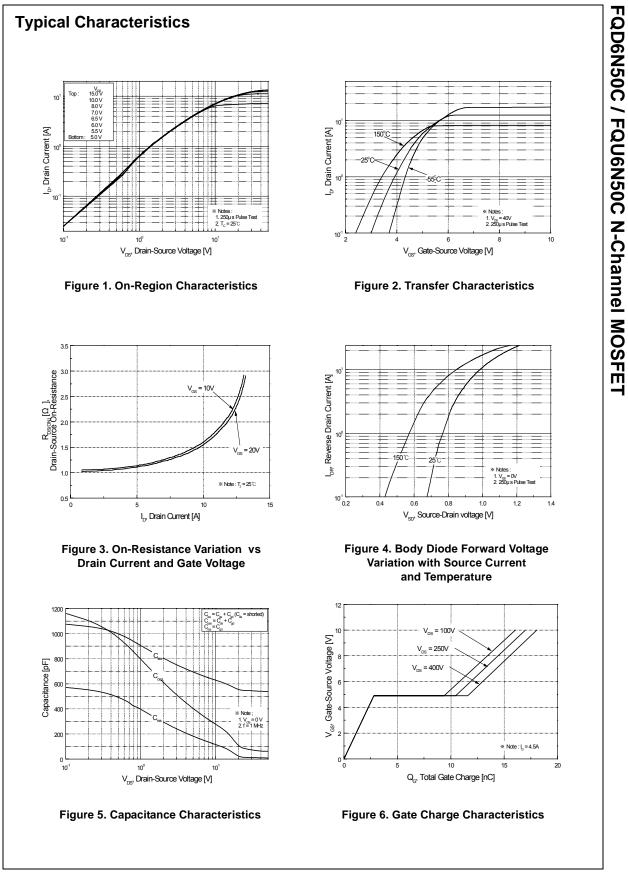

Features

+ 4.5 A, 500 V, $\mathsf{R}_{\mathsf{DS}(\mathsf{on})}$ = 1.2 Ω (Max) @V_{GS} = 10 V, I_D = 2.25 A

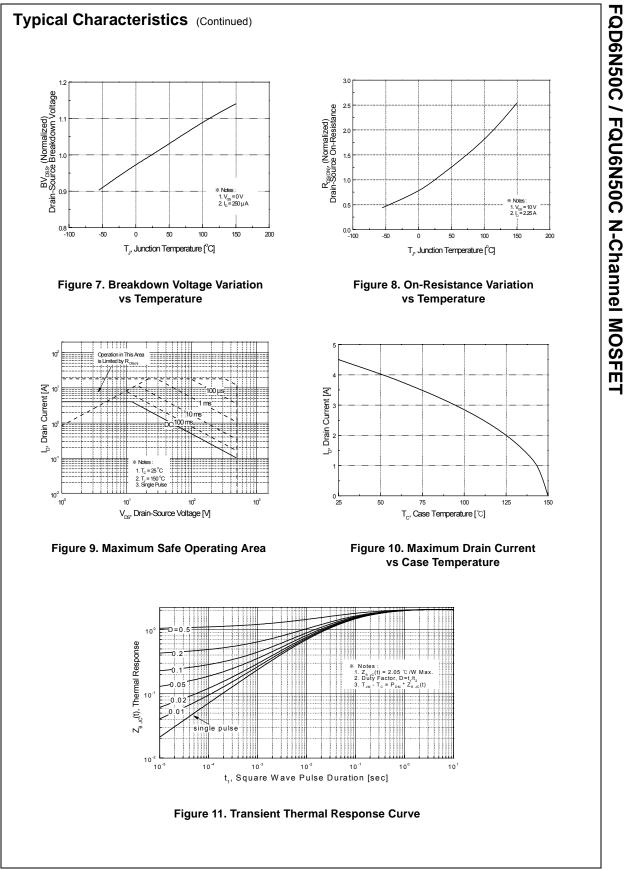
FQD6N50C / FQU6N50C N-Channel MOSFET

March 2013

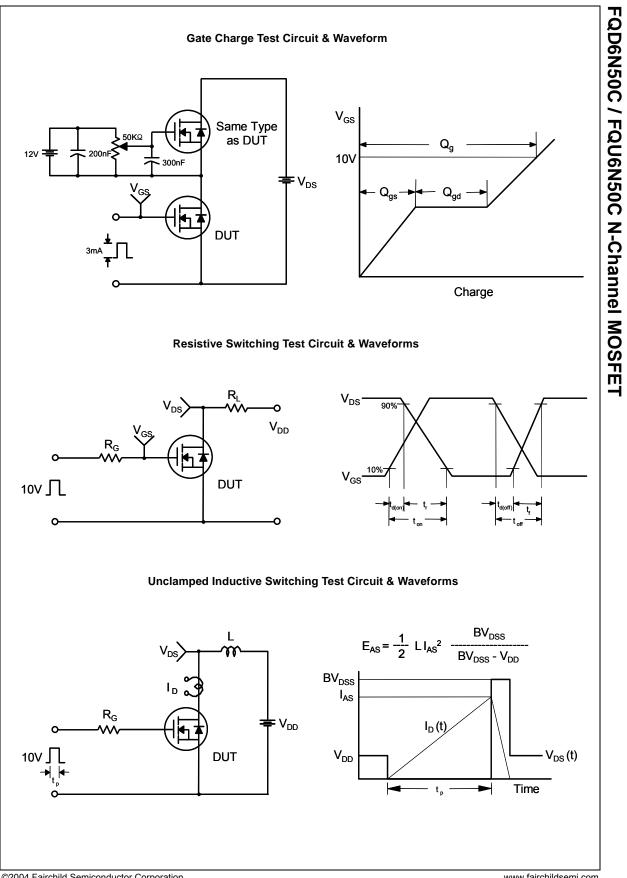
- Low Gate Charge (Typ. 19 nC)
- Low Crss (Typ. 15 pF)
- 100% Avalanche Tested

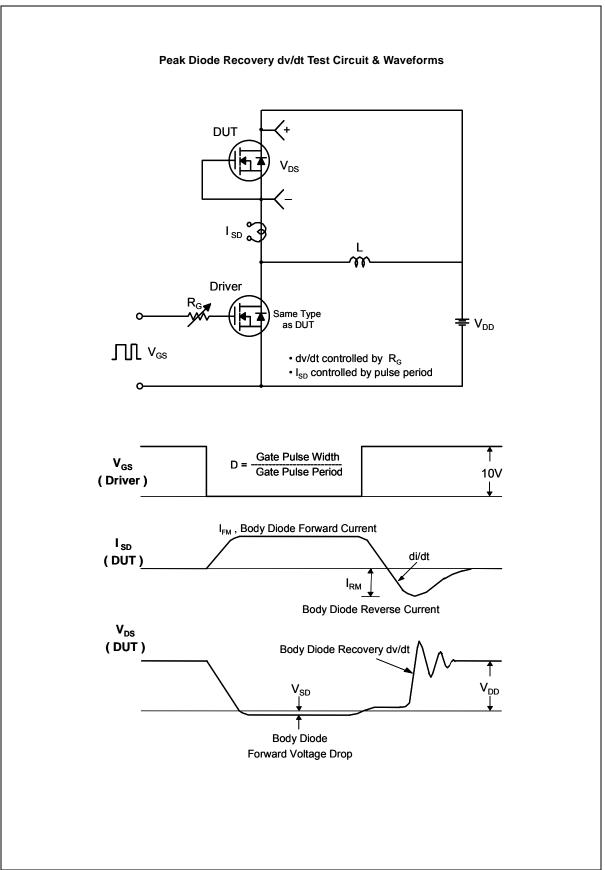

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

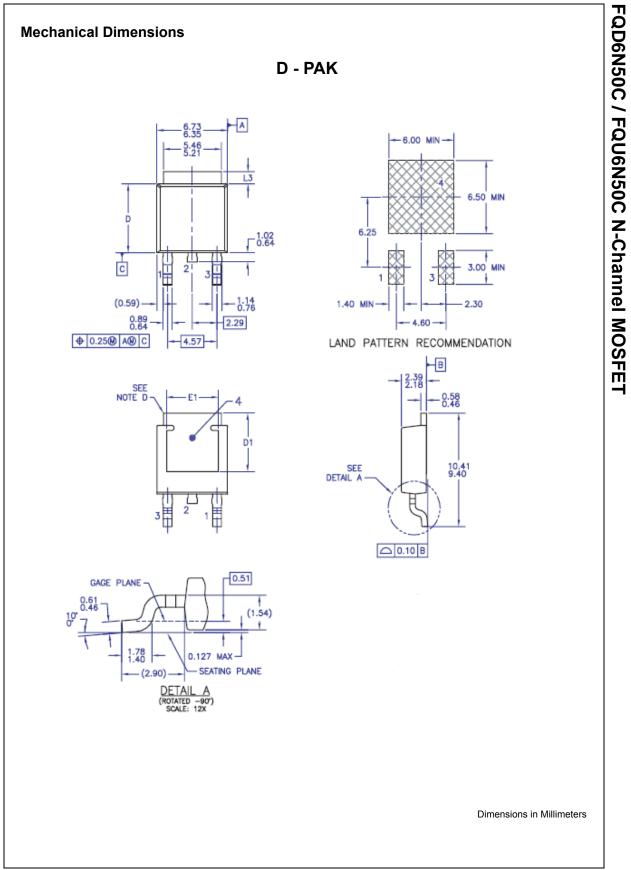
Symbol	Parameter		FQD6N50C / FQU6N50C	Unit
V _{DSS}	Drain-Source Voltage		500	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$) - Continuous ($T_C = 100^{\circ}C$)		4.5	Α
			2.7	A
I _{DM}	Drain Current - Pulsed	(Note 1)	18	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	300	mJ
I _{AR}	Avalanche Current	(Note 1)	4.5	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	6.1	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
	Power Dissipation (T _A = 25°C)*		2.5	W
PD	Power Dissipation (T _C = 25°C)		61	W
	- Derate above 25°C		0.49	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ΤL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics

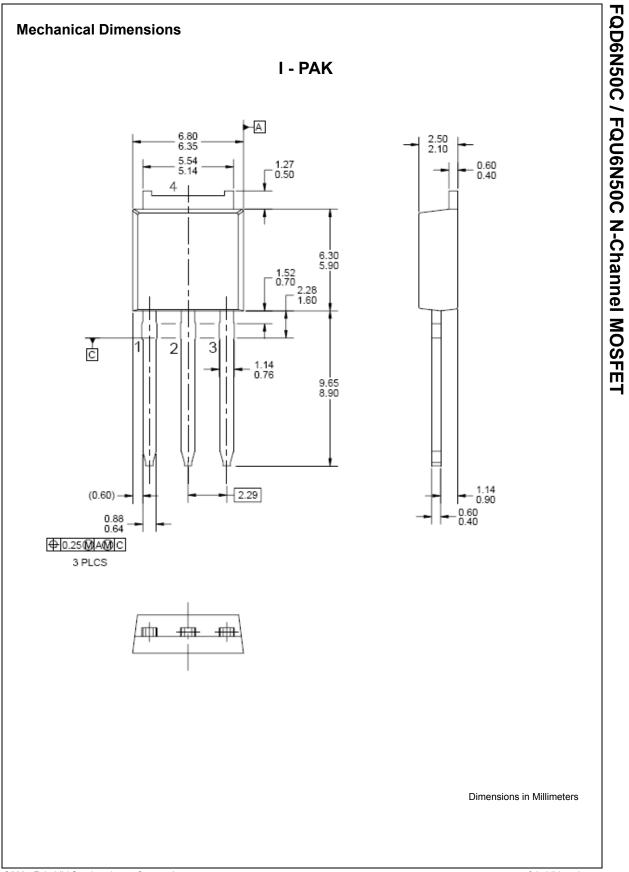
Symbol	Parameter	Тур	Max	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	-	2.05	°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient *	-	50	°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient	-	110	°C/W


$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
	Off Cha	practoristics					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{GS} = 0 V. I _D = 250 µA	500			V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ABV _{DSS}	•					
$\begin{array}{ c c c c c c } \hline \mbox{Zero Gate Voltage Dran Current} & $V_{DS} = 400 \ V, $V_{C} = 125^{\circ}C & & & 10 & μA \\ \hline \mbox{QGSF} & $Gate-Body Leakage Current, Forward} & $V_{GS} = 30 \ V, $V_{DS} = 0 \ V & & & 100 & $n A$ \\ \hline \mbox{QGSR} & $Gate-Body Leakage Current, Reverse} & $V_{GS} = -30 \ V, $V_{DS} = 0 \ V & & & -100 & $n A$ \\ \hline \mbox{QGS} & $Gate-Body Leakage Current, Reverse} & $V_{GS} = -30 \ V, $V_{DS} = 0 \ V & & & -100 & $n A$ \\ \hline \mbox{QGS} & $Gate-Body Leakage Current, Reverse} & $V_{GS} = -30 \ V, $V_{DS} = 0 \ V & & & -100 & $n A$ \\ \hline \mbox{QGS} & $Gate-Body Leakage Current, Reverse} & $V_{DS} = V_{GS}, $I_{D} = 250 \ \mu A & $2.0 \ & $4.0 \ V$ \\ \hline \mbox{QGS} & $Statc Drain-Source} & $V_{DS} = 10 \ V, $I_{D} = 2.25A & $ & $1.0 & $1.2 \ \Omega$ \\ \hline \mbox{QGS} & $Forward Transconductance} & $V_{DS} = 40 \ V, $I_{D} = 2.25A & $(Note 4) \ & $4.5 \ & S \\ \hline \mbox{QGS} & $Output Capacitance} & $V_{DS} = 25 \ V, $V_{GS} = 0 \ V, $I_{D} = 2.50 \ V, $I_{D} = 4.5A$, $I_{C} & $- & $10 \ 30 \ ns $I_{C} & $- & $15 \ 20 \ PF \ \hline \mbox{Characteristics} \\ \hline \mbox{Qass} & $Output Capacitance} & $V_{DS} = 250 \ V, $I_{D} = $4.5A$, $I_{C} & $- & $10 \ 30 \ ns $I_{C} & $- & $55 \ 120 \ ns $I_{C} & $- & $15 \ 20 \ ns $I_{C} & $- & $10 \ 30 \ ns $I_{C} & $- $55 \ 120 \ ns $I_{C} & $- $10 \ 30 \ ns $I_{C} & $- $55 \ 120 \ ns $I_{C} & $- $10 \ 30 \ ns $I_{C} & $- $55 \ 120 \ ns $I_{C} & $- $10 \ 30 \ ns $I_{C} & $- $10 \ $	ΔT_{J}	Coefficient			0.0		v/C
VDS 400 V, IC 125°C 10 μA GSSF Gate-Body Leakage Current, Forward VGS 30 V, VDS 0 V 100 nA GSSR Gate-Body Leakage Current, Reverse VGS 30 V, VDS 0 V 100 nA On Characteristics VGS VDS 2.0 4.0 V QGS(m) Static Drain-Source On-Resistance VDS = 250 μA 2.0 4.0 V QFS Forward Transconductance VDS = 2.55 μA 1.0 1.2 Ω QFS Forward Transconductance VDS = 40 V, ID = 2.25A 4.0 V QFS Forward Transconductance VDS = 40 V, ID = 2.25A 4.0 V QFS Output Capacitance VDS = 25 V, VGS = 0 V, ID 4.5 5 Crass Reverse Trans	DSS	Zero Gate Voltage Drain Current				1	μA
Gass Gate-Body Leakage Current, Reverse $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ 0 nA On Characteristics V QS (h) Gate Threshold Voltage VDS = VGS, ID = 250 µA 2.0 4.0 V QS(n) Static Drain-Source On-Resistance VDS = 10 V, ID = 2.25A 1.0 1.2 Ω JFS Forward Transconductance VDS = 40 V, ID = 2.25A (Note 4) 4.5 S Opnamic Characteristics VDS = 25 V, VGS = 0 V, IF = 1.0 MHz 4.5 S Opnamic Characteristics VDD = 250 V, ID = 4.5A, IF = 1.0 MHz 540 700 PF Switching Characteristics VDD = 250 V, ID = 4.5A, IF = 100 MHz 1.0 30 ns Addiff Turn-On Bias Time IF VDB = 250 V, ID = 4.5A, IF 1.0 30 ns Agg Total Gate Charge VDS = 400 V, ID = 4.5A,						-	μA
Dn Characteristics V _{DS} = V _{GS} , I _D = 250 μ A 2.0 4.0 V $Q_{S(th)}$ Gate Threshold Voltage V _{GS} = 10 V, I _D = 2.25A 1.0 1.2 Ω Q_{FS} Forward Transconductance V _{DS} = 40 V, I _D = 2.25A 1.0 1.2 Ω Q_{FS} Forward Transconductance V _{DS} = 40 V, I _D = 2.25A 4.5 S Opnamic Characteristics V _{DS} = 40 V, I _D = 2.25A (Note 4) 4.5 S Opnamic Characteristics V _{DS} = 25 V, V _{GS} = 0 V, I _D = 2.25A 4.5 S Opnamic Characteristics V _{DS} = 25 V, V _{GS} = 0 V, I _D = 2.50 80 105 pF Switching Characteristics 10 30 ns 15 20 pF Switching Characteristics 10 30 ns 35 80 ns $q(off)$ Turn-On Rise Time R 55	GSSF						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GSSR	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	On Cha	racteristics					
$ \begin{array}{c cccccccccccccccccccccccccccccc$			V _{DS} = V _{GS} , I _D = 250 μA	20		4.0	V
On-Resistance VGS = 10 V, 10 = 2.25A III IIII IIII IIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		ů – ř				-	-
Oynamic Characteristics Σ_{ISS} Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 540 700 pF Σ_{ISS} Output Capacitancef = 1.0 MHz 80 105 pF Σ_{rss} Reverse Transfer Capacitance 15 20 pFSwitching Characteristics $d(on)$ Turn-On Delay Time $V_{DD} = 250 \text{ V}, \text{ I}_D = 4.5\text{ A},$ 10 30 ns r Turn-On Rise Time $R_G = 25 \Omega$ 35 80 ns $d(off)$ Turn-Off Delay Time $N_{DS} = 400 \text{ V}, \text{ I}_D = 4.5\text{ A},$ 45 100 ns ρ_{Qg} Total Gate Charge $V_{DS} = 400 \text{ V}, \text{ I}_D = 4.5\text{ A},$ 19 25 nC Ω_{qg} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 8.8 nC Ω_{qd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 8.8 nC Ω_{qd} Gate-Drain Charge $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A}$ 4.5 A S_M Maximum Pulsed Drain-Source Diode Forward Current 18 A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ 1.4 V_{Tr}	*DS(on)		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2.25 \text{ A}$		1.0	1.2	Ω
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FS	Forward Transconductance	$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 2.25 \text{ A}$ (Note 4)		4.5		S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1				
CossOutput CapacitanceFigs Lot, rgs or, rgs			1			1	
CrssReverse Transfer Capacitance1520pFSwitching Characteristics $d(on)$ Turn-On Delay Time $V_{DD} = 250 \text{ V}, \text{ I}_D = 4.5\text{ A},$ 1030ns r Turn-On Rise Time $V_{DD} = 250 \text{ V}, \text{ I}_D = 4.5\text{ A},$ 1030ns r Turn-Off Delay Time $$ 35 80ns f Turn-Off Fall Time $(Note 4, 5)$ 45100ns Ω_g Total Gate Charge $V_{DS} = 400 \text{ V}, \text{ I}_D = 4.5\text{ A},$ 1925nC Ω_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ $$ 8.8nC Ω_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $$ 8.8nCDrain-Source Diode Characteristics and Maximum RatingssMaximum Continuous Drain-Source Diode Forward Current4.5A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ 1.4V V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ 1.4V			V _{DS} = 25 V, V _{GS} = 0 V,		540	700	
Switching Characteristics $d(on)$ Turn-On Delay Time $V_{DD} = 250 \text{ V}, \text{ I}_D = 4.5\text{A},$ $$ 10 30 ns r Turn-On Rise Time $R_G = 25 \Omega$ $$ 35 80 ns $d(off)$ Turn-Off Delay Time $(Note 4, 5)$ $$ 55 120 ns f Turn-Off Fall Time $(Note 4, 5)$ $$ 455 100 ns Ω_g Total Gate Charge $V_{DS} = 400 \text{ V}, \text{ I}_D = 4.5\text{ A},$ $$ 19 25 nC Ω_{gs} Gate-Source Charge $V_{DS} = 10 \text{ V}$ $$ 2.8 $$ nC Ω_{gd} Gate-Drain Charge $V_{CS} = 10 \text{ V}$ $$ 8.8 $$ nCOrain-Source Diode Characteristics and Maximum RatingssMaximum Continuous Drain-Source Diode Forward Current $$ $$ 4.5 A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ $$ $$ 1.4 V V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ $$ $$ 1.4 V			f = 1.0 MHz		80	105	pF
Turn-On Delay Time r $V_{DD} = 250 \text{ V}, \text{ I}_D = 4.5\text{A},$ $R_G = 25 \Omega$ 1030nsrTurn-On Rise Time fTurn-Off Delay Time f $R_G = 25 \Omega$ $R_G = 25 \Omega$ $$ 35 80 ns A_{gg} Total Gate Charge A_{gg} $V_{DS} = 400 \text{ V}, \text{ I}_D = 4.5\text{A},$ $V_{GS} = 10 \text{ V}$ $$ 19 25 nC A_{gg} Gate-Source Charge A_{gd} $V_{DS} = 400 \text{ V}, \text{ I}_D = 4.5\text{A},$ $V_{GS} = 10 \text{ V}$ $$ 19 25 nC A_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $NGS = 10 \text{ V}$ $$ 8.8 $$ nC Orain-Source Diode Characteristics and Maximum RatingsSMaximum Continuous Drain-Source Diode Forward Current $$ $$ 1.4 V V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ $$ $$ 1.4 V V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ $$ $$ 1.4 V	S _{rss}	Reverse Transfer Capacitance			15	20	pF
Turn-On Rise Time d(off) $V_{DD} = 230$ V, $I_D = 4.5A$, $R_G = 25 \Omega$ 3580ns $a(off)$ Turn-Off Delay Time f $R_G = 25 \Omega$ $R_G = 25 \Omega$ 55120ns A_g Total Gate Charge A_{gs} $V_{DS} = 400$ V, $I_D = 4.5A$, $V_{GS} = 10$ V1925nC A_{gd} Gate-Source Charge A_{gd} $V_{DS} = 400$ V, $I_D = 4.5A$, $V_{GS} = 10$ V1925nC(Note 4, 5)8.8nCDrain-Source Diode Characteristics and Maximum RatingsSMaximum Continuous Drain-Source Diode Forward Current4.5A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = 4.5$ A1.4V $V_{GS} = 0$ V, $I_S = 4.5$ A,1.4V $V_{GS} = 0$ V, $I_S = 4.5$ A,1.4V				1		T	1
rTurn-On Rise Time d(off) $R_G = 25 \Omega$ 35 80 ns $d(off)$ Turn-Off Delay Time fTurn-Off Fall Time $(Note 4, 5)$ 55 120 ns R_g Total Gate Charge R_g $V_{DS} = 400 V, I_D = 4.5A,$ $V_{GS} = 10 V$ 19 25 nC R_g Gate-Source Charge R_g $V_{DS} = 400 V, I_D = 4.5A,$ $V_{GS} = 10 V$ 19 25 nC R_{gd} Gate-Drain Charge $V_{GS} = 10 V$ $(Note 4, 5)$ 8.8 nCOrain-Source Diode Characteristics and Maximum RatingssMaximum Continuous Drain-Source Diode Forward Current $$ 4.5 A M_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 V, I_S = 4.5 A,$ $$ 1.4 V rr Reverse Recovery Time $V_{GS} = 0 V, I_S = 4.5 A,$ 260 ns	d(on)	-	V _{DD} = 250 V, I _D = 4.5A,			30	ns
f_{f} Turn-Off Fall Time(Note 4, 5)45100ns A_{g} Total Gate Charge $V_{DS} = 400 \text{ V}, \text{ I}_{D} = 4.5 \text{ A},$ 1925nC A_{gd} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 2.8nC A_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 8.8nCOrain-Source Diode Characteristics and Maximum RatingsSMaximum Continuous Drain-Source Diode Forward Current4.5ASMMaximum Pulsed Drain-Source Diode Forward Current18A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 4.5 \text{ A},$ 1.4V rr Reverse Recovery Time $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 4.5 \text{ A},$ 260ns							ns
A_g Total Gate Charge $V_{DS} = 400 \text{ V}, I_D = 4.5\text{ A},$ 4.310011s A_{gs} Gate-Source Charge $V_{DS} = 400 \text{ V}, I_D = 4.5\text{ A},$ 1925nC A_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 2.8nCOrain-Source Diode Characteristics and Maximum RatingsSMaximum Continuous Drain-Source Diode Forward Current4.5ASMMaximum Pulsed Drain-Source Diode Forward Current18A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},$ 1.4V rr Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},$ 260ns	. ,		(Note 4 E)				ns
D_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ $$ 2.8 $$ nC D_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $(Note 4, 5)$ $$ 8.8 $$ nC Drain-Source Diode Characteristics and Maximum RatingsSMaximum Continuous Drain-Source Diode Forward Current $$ $$ 4.5 ASMMaximum Pulsed Drain-Source Diode Forward Current $$ $$ 1.8 A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},$ $$ $$ 1.4 V rr Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},$ $$ 260 $$ ns			(NOLE 4, 5)		-		-
Drain-Source Diode Characteristics and Maximum Ratings8.8nCSMaximum Continuous Drain-Source Diode Forward Current4.5ASMMaximum Pulsed Drain-Source Diode Forward Current18AVSDDrain-Source Diode Forward VoltageVGS = 0 V, IS = 4.5 A1.4VrrReverse Recovery TimeVGS = 0 V, IS = 4.5 A,260ns	0	•	$V_{DS} = 400 V, I_{D} = 4.5A,$		-	25	nC
Drain-Source Diode Characteristics and Maximum Ratings s Maximum Continuous Drain-Source Diode Forward Current 4.5 A SM Maximum Pulsed Drain-Source Diode Forward Current 18 A V _{SD} Drain-Source Diode Forward Voltage V _{GS} = 0 V, I _S = 4.5 A 1.4 V rr Reverse Recovery Time V _{GS} = 0 V, I _S = 4.5 A, 260 ns	-	•	+				
SMaximum Continuous Drain-Source Diode Forward Current4.5ASMMaximum Pulsed Drain-Source Diode Forward Current18A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 4.5 A$ 1.4VrrReverse Recovery Time $V_{GS} = 0 V$, $I_S = 4.5 A$,260ns	ל _{פל}	Gate-Drain Charge	(Note 4, 5)		8.8		nC
SMaximum Continuous Drain-Source Diode Forward Current4.5ASMMaximum Pulsed Drain-Source Diode Forward Current18A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 4.5 A$ 1.4V rr Reverse Recovery Time $V_{GS} = 0 V$, $I_S = 4.5 A$,260ns	Drain-9	ource Diode Characteristics a	nd Maximum Patings				
SMMaximum Pulsed Drain-Source Diode Forward CurrentImage: Height and the second se		1	•			45	Δ
V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A}$ 1.4 V rr Reverse Recovery Time $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ 260 ns	-					-	
rr Reverse Recovery Time $V_{GS} = 0 V$, $I_S = 4.5 A$, 260 ns							
		Ŭ					
			00 0				
	Q _{rr}	Reverse Recovery Charge	$dI_{F} / dt = 100 \text{ A}/\mu \text{s}$ (Note 4)		1.6		μC


©2004 Fairchild Semiconductor Corporation FQD6N50C / FQU6N50C Rev. C0



©2004 Fairchild Semiconductor Corporation FQD6N50C / FQU6N50C Rev. C0



©2004 Fairchild Semiconductor Corporation FQD6N50C / FQU6N50C Rev. C0

©2004 Fairchild Semiconductor Corporation FQD6N50C / FQU6N50C Rev. C0

©2004 Fairchild Semiconductor Corporation FQD6N50C / FQU6N50C Rev. C0

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED[®]** Dual Cool™ **EcoSPARK[®]** EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX[™] **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

FPSTM

PowerTrench® PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure[™] ng our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

Sync-Lock™ SYSTEM^{®*} GENERAL TinyBoost¹ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* µSerDes™ N UHC Ultra FRFET™ UniFET™

VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or form Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Bev. I