

Symbol	Parameter		FQD3P50 / FQU3P50	Units
V _{DSS}	Drain-Source Voltage		-500	V
I _D	Drain Current - Continuous ($T_C = 25^\circ$	C)	-2.1	А
	- Continuous (T _C = 100	°C)	-1.33	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-8.4	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	250	mJ
I _{AR}	Avalanche Current	(Note 1)	-2.1	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-4.5	V/ns
PD	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		50	W
	- Derate above 25°C	-	0.4	W/°C

Thermal Characteristics

Operating and Storage Temperature Range

1/8" from case for 5 seconds

Maximum lead temperature for soldering purposes,

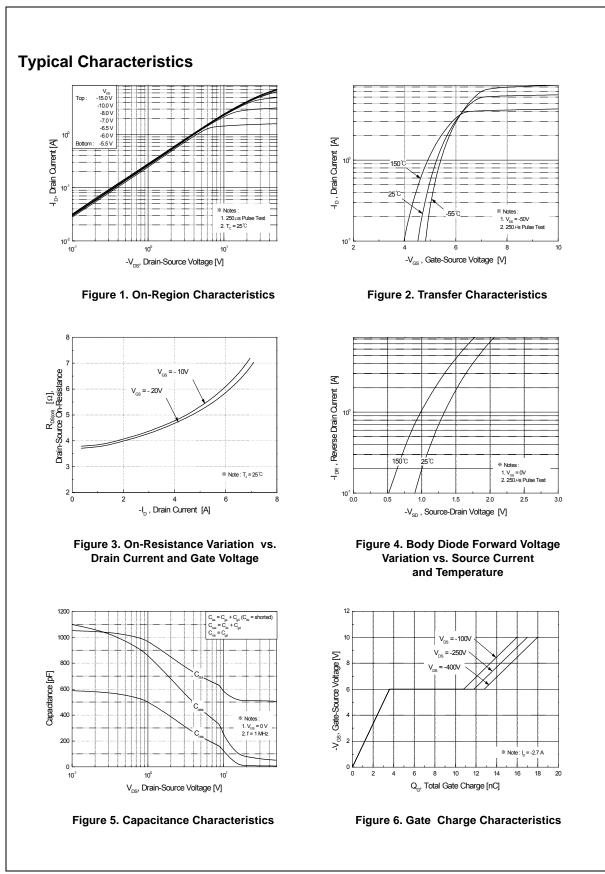
Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		2.5	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

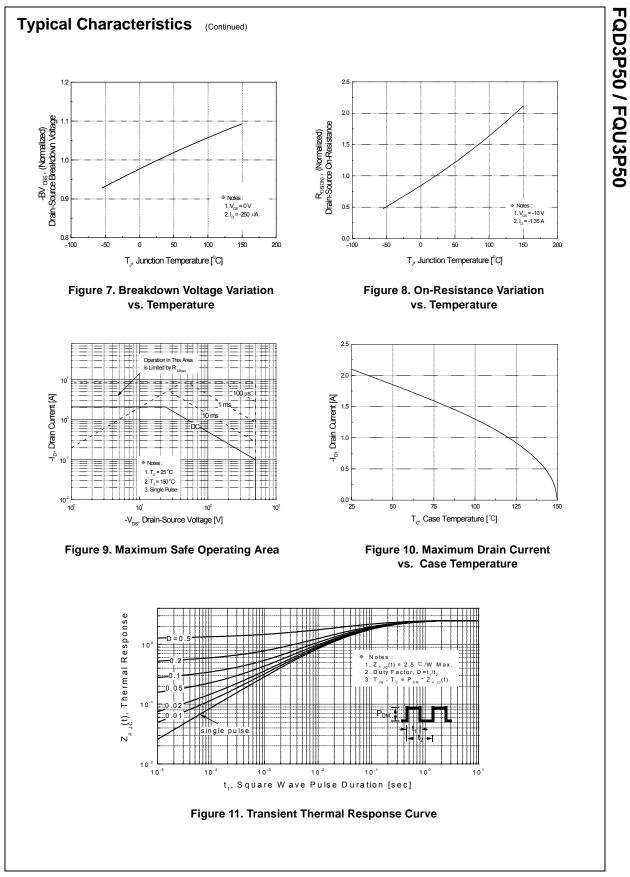
©2009 Fairchild Semiconductor Internati

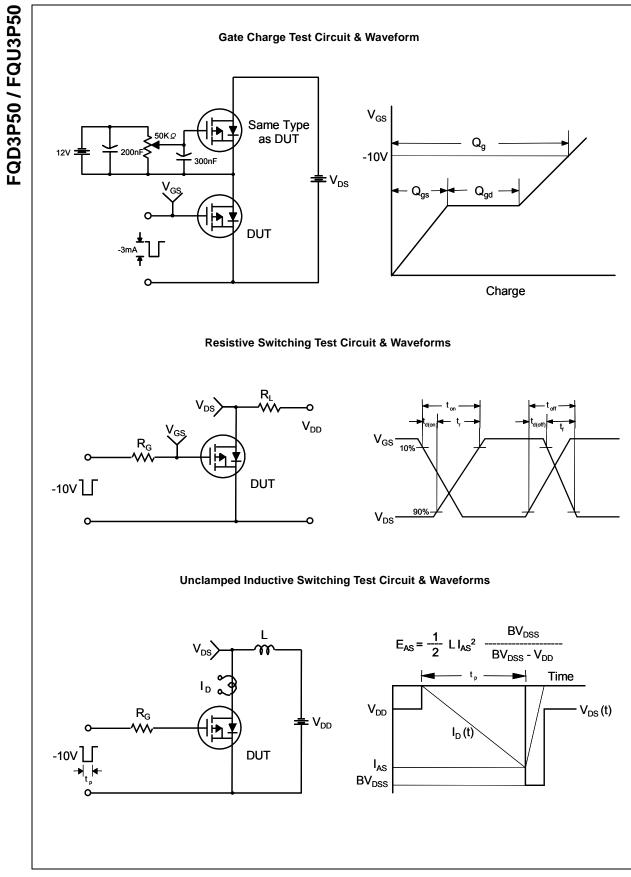
T_J, T_{STG}

 T_L

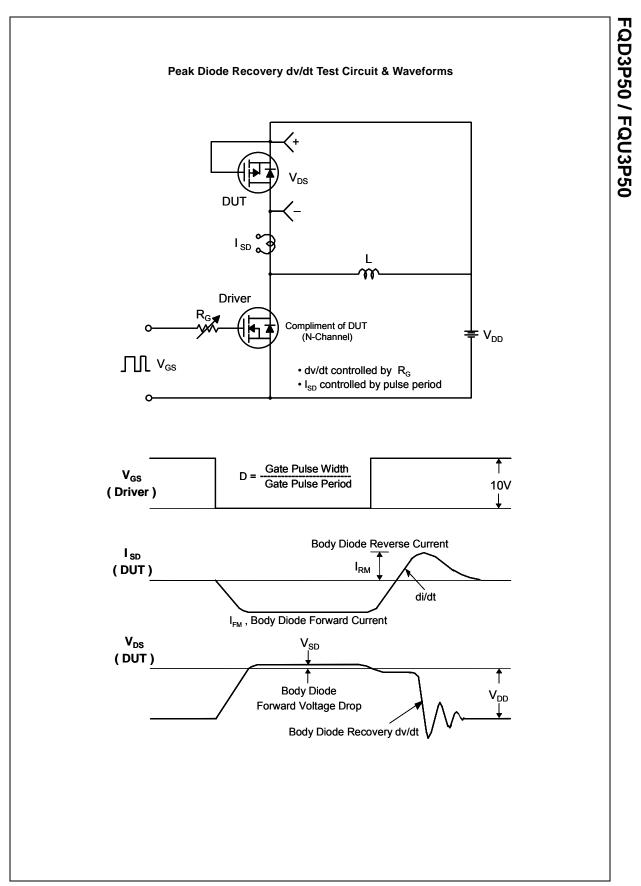
°C

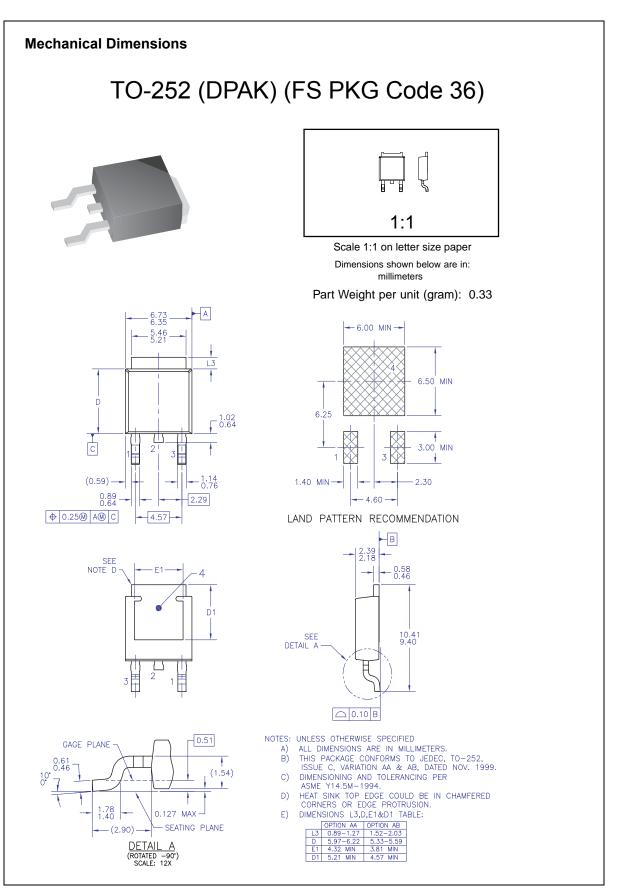

°C

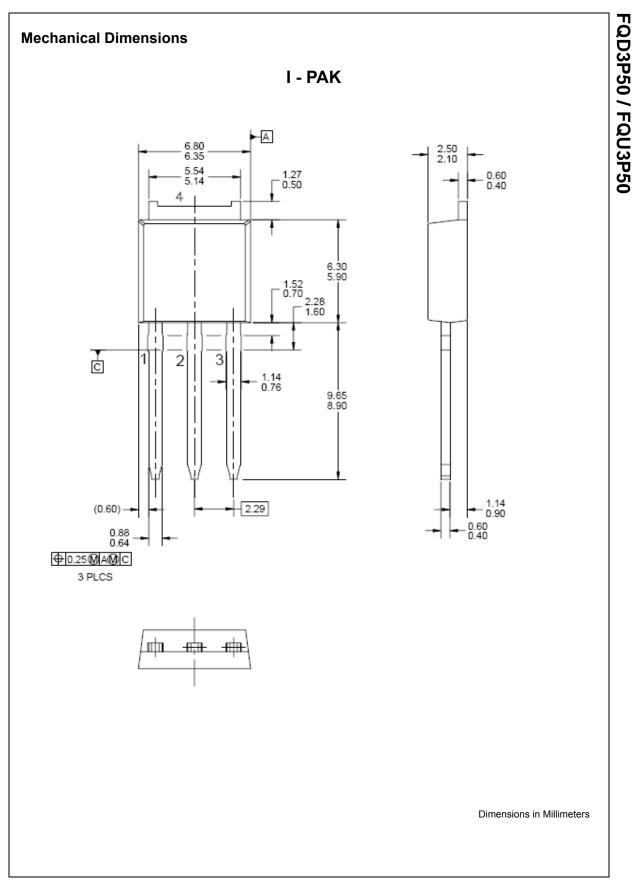

-55 to +150


300

$ \Delta T_{J} Coefficient \qquad I_{D} = -250 \ \mu A, Referenced to 25 \ C \qquad \qquad 0.42 $ $ DSS \qquad Zero Gate Voltage Drain Current \qquad V_{DS} = -500 \ V, V_{GS} = 0 \ V \qquad \qquad \qquad V_{DS} = -400 \ V, T_{C} = 125^{\circ}C \qquad \qquad \qquad \qquad V_{DS} = -400 \ V, T_{C} = 125^{\circ}C \qquad \qquad$	100 nA 100 nA -5.0 V 4.9 Ω S 660 pF 90 pF	0.42 10 100 100 100 3.9 4.9	0.42 -3.0		$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -500 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = -400 \ \text{V}, \ T_{C} = 125^{\circ}\text{C}$ $V_{GS} = -30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$	Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward	BV _{DSS} ΔBV _{DSS} ΔT _J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 V/°C -1 μA -10 μA 100 nA 100 nA 5.0 V 4.9 Ω S 660 pF 90 pF 	0.42 10 100 100 100 3.9 4.9	0.42 -3.0		$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -500 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = -400 \ \text{V}, \ T_{C} = 125^{\circ}\text{C}$ $V_{GS} = -30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$	Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward	BV _{DSS} ΔBV _{DSS} ΔT _J
$ \Delta T_{J} Coefficient \qquad I_{D} = -250 \ \mu A, Referenced to 25 \ C \qquad \qquad 0.42 $ $ DSS \qquad Zero Gate Voltage Drain Current \qquad \frac{V_{DS} = -500 \ V, V_{GS} = 0 \ V \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	-1 μA -10 μA 100 nA 100 nA -5.0 V 4.9 Ω S 660 pF 90 pF	1 10 100 100 100 3.9 4.9	 -3.0		$V_{DS} = -500 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -400 \text{ V}, T_{C} = 125^{\circ}\text{C}$ $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$	Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward	$\Delta T_{\rm J}$
Zero Gate Voltage Drain Current $V_{DS} = -400 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$ GSSFGate-Body Leakage Current, Forward $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ GSSRGate-Body Leakage Current, Reverse $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ On Characteristics//GS(th)Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = -250 \mu \text{ A}$ 3.0Physical Characteristics//GS(on)Static Drain-Source On-Resistance $V_{GS} = -10 \text{ V}, I_D = -1.05 \text{ A}$ 3.9Optimic CharacteristicsOptimic CharacteristicsClassInput Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, I_D = -1.05 \text{ A}$ 5106ClassOutput Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, I_D = -1.05 \text{ A}$ 9.5Optimic CharacteristicsClassInput Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, I_D = -2.7 \text{ A}, I_D = -$	-10 μA 100 nA 100 nA -5.0 V 4.9 Ω S 660 pF 90 pF	10 100 100 5.0 3.9 4.9	 -3.0		$V_{DS} = -400 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$ $V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	Gate-Body Leakage Current, Forward	DSS
Gate-Body Leakage Current, Forward $V_{GS} = -400$ V, $V_{C} = 125^{\circ}C$ GSSFGate-Body Leakage Current, Reverse $V_{GS} = -30$ V, $V_{DS} = 0$ VGSSRGate-Body Leakage Current, Reverse $V_{GS} = 30$ V, $V_{DS} = 0$ VOn Characteristics $V_{GS}(th)$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250$ μ A $P_{S}(on)$ Static Drain-Source On-Resistance $V_{GS} = -10$ V, $I_D = -1.05$ A3.9 Q_{FS} Forward Transconductance $V_{DS} = -50$ V, $I_D = -1.05$ A2.1 $Optimic CharacteristicsV_{DS} = -25 V, V_{GS} = 0 V,f = 1.0 MHz5106C_{rss}Input CapacitanceV_{DS} = -25 V, V_{GS} = 0 V,f = 1.0 MHz9.5C_{rss}Reverse Transfer CapacitanceV_{DS} = -25 V, V_{GS} = 0 V,f = 1.0 MHz9.5C_{rss}Reverse Transfer CapacitanceV_{DD} = -250 V, I_D = -2.7 A,R_G = 25 \Omega12C_{rss}Turn-On Delay TimeTurn-On Rise TimeV_{DD} = -250 V, I_D = -2.7 A,R_G = 25 \Omega12C_{rss}Turn-Off Delay TimeTurn-Off Fall Time35C_{rss}Turn-Off Fall Time35C_{rss}Turn-Off Fall Time451$	100 nA 100 nA -5.0 V 4.9 Ω S 660 pF 90 pF	100 100 5.0 3.9 4.9	 -3.0		$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	Gate-Body Leakage Current, Forward	
GostGate-Body Leakage Current, Reverse $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ 1On Characteristics $V_{GS}(th)$ Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = -250 \mu \text{A}$ -3.0 $R_{S}(on)$ Static Drain-Source On-Resistance $V_{GS} = -10 \text{ V}, I_D = -1.05 \text{ A}$ 3.9 QFS Forward Transconductance $V_{DS} = -50 \text{ V}, I_D = -1.05 \text{ A}$ 2.1Optimize Characteristics C_{ISS} Input Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 5106 C_{ISS} Output Capacitance $f = 1.0 \text{ MHz}$ 9.5Switching Characteristics $d(on)$ Turn-On Delay Time r $V_{DD} = -250 \text{ V}, I_D = -2.7 \text{ A},$ $R_G = 25 \Omega$ 12 $(Note 4, 5)$ 561 $d(off)$ Turn-Off Delay Time f $(Note 4, 5)$ 35 f Turn-Off Fall Time $(Note 4, 5)$ 451	100 nA -5.0 V 4.9 Ω S 660 pF 90 pF	100 5.0 3.9 4.9			55		
On Characteristics $V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ -3.0 $$ -3.0 $$ $R_{DS(on)}$ Static Drain-Source On-Resistance $V_{GS} = -10 \ V$, $I_D = -1.05 \ A$ $$ 3.9 $$ QFS Forward Transconductance $V_{DS} = -50 \ V$, $I_D = -1.05 \ A$ $$ 2.1 Oppnamic Characteristics C_{ISS} Input Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ $$ $510 \ C$ CossOutput Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ $$ $70 \ C$ Switching Characteristicsd(on)Turn-On Delay Time r $V_{DD} = -250 \ V$, $I_D = -2.7 \ A$, $R_G = 25 \ \Omega$ $$ $12 \$ fTurn-Off Delay Time r $V_{DD} = -250 \ V$, $I_D = -2.7 \ A$, $R_G = 25 \ \Omega$ $$ $12 \$ fTurn-Off Fall Time $V_{DD} = -250 \ V$, $I_D = -2.7 \ A$, $R_G = 25 \ \Omega$ $$ $12 \$ fTurn-Off Fall Time $V_{DD} = -250 \ V$, $I_D = -2.7 \ A$, $$ $$ $12 \$ fTurn-Off Fall Time $$ $35 \$ $12 \$ fTurn-Off Fall Time $$ $35 \$ $12 \$ fTurn-Off Fall Time $$ $45 \$ $145 \$	-5.0 V 4.9 Ω S 660 pF 90 pF	5.0 3.9 4.9	-3.0	1	V _{GS} = 30 V, V _{DS} = 0 V	Gate-Body Leakage Current, Reverse	GSSF
	4.9 Ω S 660 pF 90 pF	3.9 4.9		20		,	GSSR
	4.9 Ω S 660 pF 90 pF	3.9 4.9		2.0		racteristics	On Cha
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S 660 pF 90 pF			-3.0	$V_{DS} = V_{GS}$, $I_{D} = -250 \mu A$	t	
Dynamic CharacteristicsDissInput Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 51060CossOutput Capacitancef = 1.0 MHz70CrssReverse Transfer Capacitance9.59.5Switching Characteristicsd(on)Turn-On Delay Time $V_{DD} = -250 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ 12rTurn-On Rise Time $R_G = 25 \Omega$ 561d(off)Turn-Off Delay Time(Note 4, 5)451	660 pF 90 pF	2.1	3.9		V _{GS} = -10 V, I _D = -1.05 A		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90 pF	2.1	2.1		V _{DS} = -50 V, I _D = -1.05 A (Note 4)	Forward Transconductance	JFS
CossOutput Capacitance r_{DS}	90 pF	-10 000	540		Ι		
C_{rss} Reverse Transfer Capacitance9.5Switching Characteristics $d(on)$ Turn-On Delay Time $V_{DD} = -250 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ 12 $$ Turn-On Rise Time $R_G = 25 \Omega$ 561 $d(off)$ Turn-Off Delay Time35451							
Switching Characteristics $d(on)$ Turn-On Delay Time $V_{DD} = -250 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ 12rTurn-On Rise Time $R_G = 25 \Omega$ 561 $d(off)$ Turn-Off Delay Time(Note 4, 5)35fTurn-Off Fall Time451			-		t = 1.0 MHz		
d(off) Turn-Off Delay Time 35 Turn-Off Fall Time (Note 4, 5) 45 1	35 ns				V _{DD} = -250 V, I _D = -2.7 A,	Turn-On Delay Time	d(on)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35 ns	12 35	12				
f Turn-Off Fall Time (Note 4, 5) 45	120 ns	56 120	56			Turn-On Rise Time	
					(Note 4 E)	,	
	100 ns	45 100	45		(Note 4, 5)	Turn-Off Fall Time	
	23 nC	18 23	18		V_{DS} = -400 V, I_{D} = -2.7 A,	Total Gate Charge	ל ^g
Q_{gs} Gate-Source Charge $V_{GS} = -10 V$ 3.6	nC					•	-
Q _{gd} Gate-Drain Charge (Note 4, 5) 9.2	nC	9.2	9.2		(Note 4, 5)	Gate-Drain Charge	2 _{gd}
Drain-Source Diode Characteristics and Maximum Ratings					nd Maximum Ratings	ource Diode Characteristics ar	Drain-S
S Maximum Continuous Drain-Source Diode Forward Current	-2.1 A	2.1					S
SM Maximum Pulsed Drain-Source Diode Forward Current	-8.4 A	8.4			Forward Current	Maximum Pulsed Drain-Source Diode F	SM
V_{SD} Drain-Source Diode Forward Voltage V_{GS} = 0 V, I_S = -2.1 A	-5.0 V	5.0			V _{GS} = 0 V, I _S = -2.1 A	Drain-Source Diode Forward Voltage	/ _{SD}
$V_{GS} = 0 V, I_S = -2.7 A,270$	ns	270	270		V _{GS} = 0 V, I _S = -2.7 A,	Reverse Recovery Time	rr
Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 \text{ A/}\mu \text{s}$ (Note 4) 1.5	μC	1.5	1.5		$dI_{F} / dt = 100 A/\mu s$ (Note 4)	Reverse Recovery Charge	շ ^{ու}
tes:Repetitive Rating : Pulse width limited by maximum junction temperature $_{-}$ = 102mH, I_{AS} = -2.1A, V_{DD} = -50V, R_{G} = 25 Ω , Starting T_{J} = 25°C I_{SD} \leq -2.7A, di/dt \leq 200A/µs, V_{DD} \leq BV _{DSS} , Starting T_{J} = 25°CPulse Test : Pulse width \leq 300µs, Duty cycle \leq 2%						$ \begin{array}{l} I_{AS} \stackrel{=}{=} -2.1A, V_{DD} \stackrel{=}{=} -50V, R_{G} \stackrel{=}{=} 25 \Omega, Starting T_{J} \stackrel{=}{=} 25 ^{\circ}C \\ , di/dt \leq 200A/\mus, V_{DD} \leq BV_{DSS}, Starting T_{J} \stackrel{=}{=} 25 ^{\circ}C \end{array} $	Repetitive R L = 102mH, $_{SD} \leq -2.7A$
Essentially independent of operating temperature							






Rev. A2, January 2008

FQD3P50 / FQU3P50

©2009 Fairchild Semiconductor International

Rev. A2, January 2009

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™ *

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter[®] * **FPS™** F-PFS™

IntelliMAX™ **ISOPLANAR™** MegaBuck^{TI} MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC[®] OPTOPLANAR[®] PDP SPM™ Power-SPM™ PowerTrench[®]

PowerXS™

FRFET®

GTO™

Green FPS™

Global Power ResourceSM

Green FPS™ e-Series™

Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure[™] Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM[®] STEALTH™

SuperFET™ SuperSOT™-3

SuperSOT™-6

SuperSOT™-8

The Power Franchise[®]

SupreMOS™

SyncFET™

franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev.