FAIRCHILD

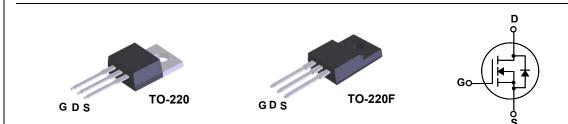
SEMICONDUCTOR®

FQP16N25C / FQPF16N25C N-Channel QFET® MOSFET

250 V, 15.6 A, 270 m Ω

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.


Features

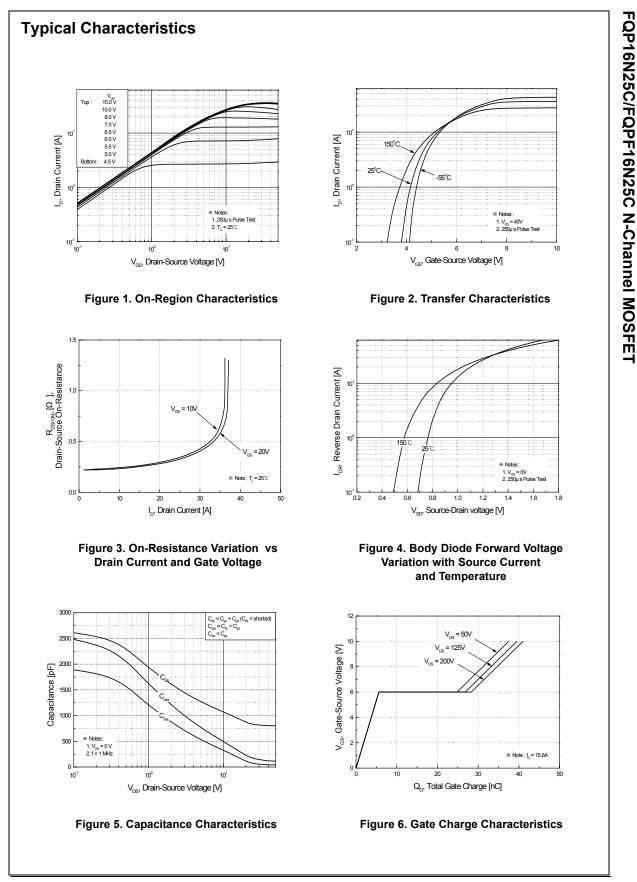
+ 15.6 A, 250 V, R_{DS(on)}=270 m \Omega(Max.) @V_{GS}=10 V, I_{D}=7.8 A

March 2013

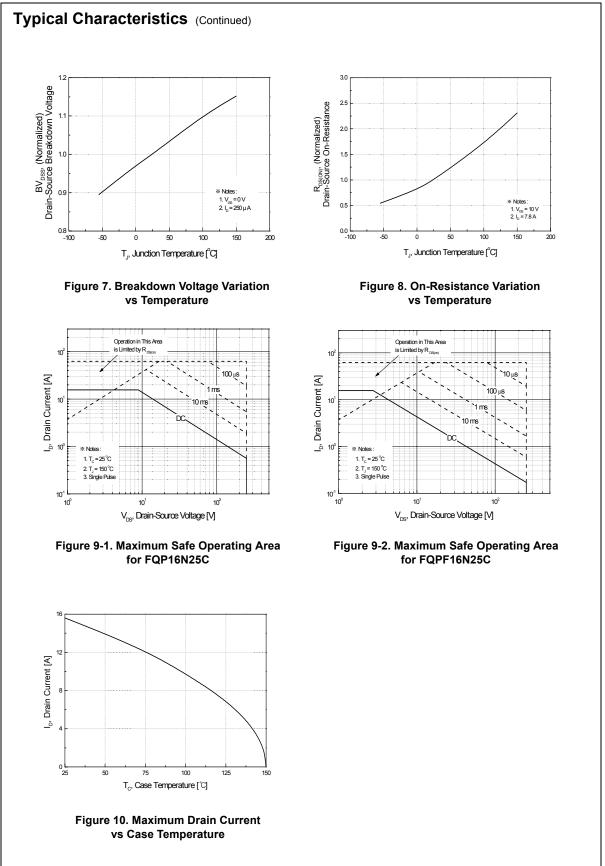
FQP16N25C/FQPF16N25C N-Channel MOSFET

- Low Gate Charge (Typ. 41 nC)
- Low C_{rss} (Typ. 68 pF)
- 100% Avalanche Tested

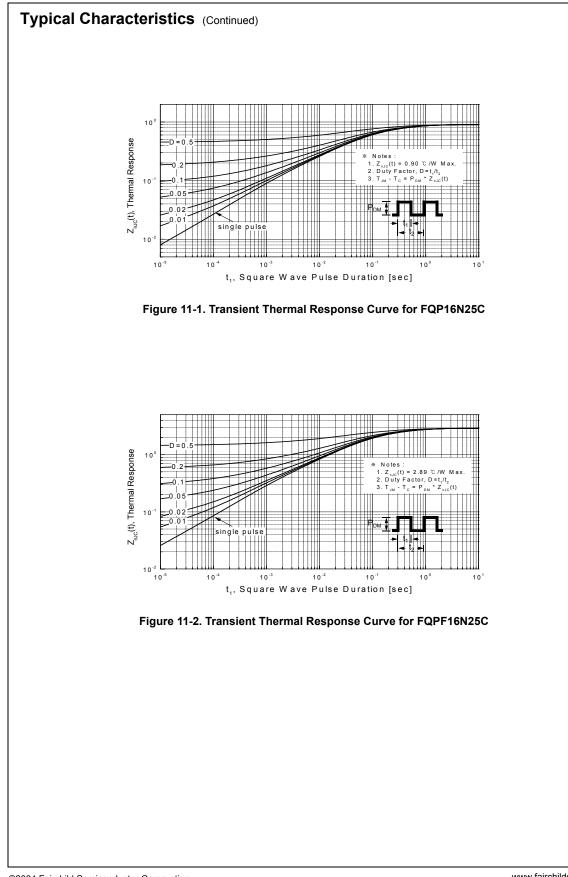
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

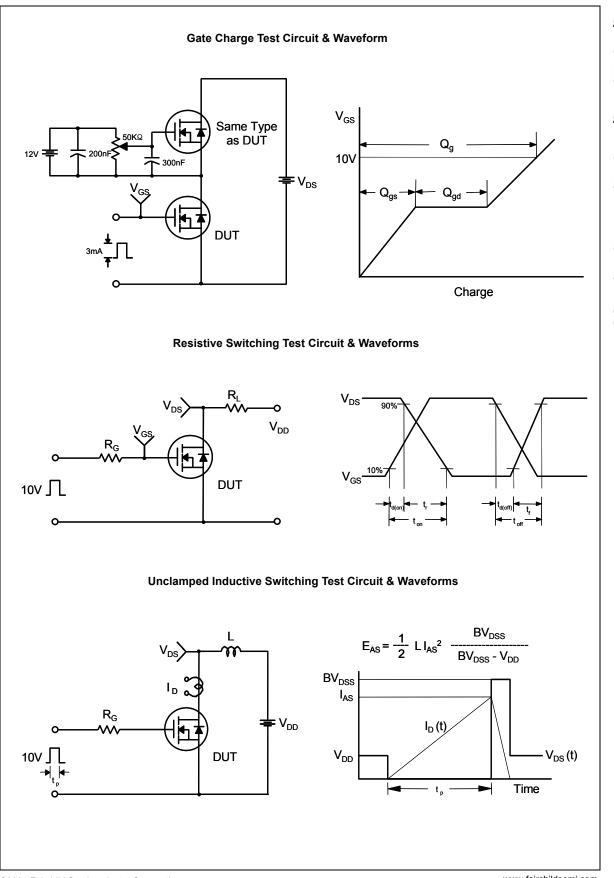

Symbol	Parameter		FQP16N25C	FQPF16N25C	Unit
V _{DSS}	Drain-Source Voltage		250		V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		15.6	15.6 *	А
	- Continuous (T _C = 100°C)		9.8	9.8 *	А
I _{DM}	Drain Current - Pulsed	(Note 1)	62.4	62.4 *	Α
V _{GSS}	Gate-Source Voltage		± 30		V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	410		mJ
I _{AR}	Avalanche Current	(Note 1)	15.6		А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	13.9		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5.5		V/ns
PD	Power Dissipation ($T_C = 25^{\circ}C$)		139	43	W
	- Derate above 25°C		1.11	0.34	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
TL	Maximum lead temperature for soldering purposes,		300		°C
۱۲	1/8" from case for 5 seconds		300		

Thermal Characteristics

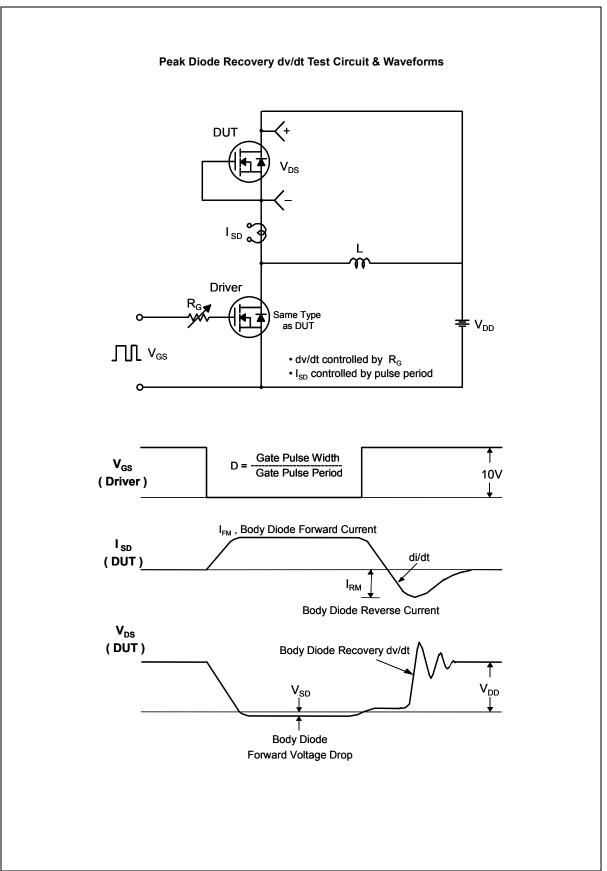

Symbol	Parameter	FQP16N25C	FQPF16N25C	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.9	2.89	°C/W	
$R_{\theta JS}$	Thermal Resistance, Case-to-Sink Typ.	0.5		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	62.5	°C/W	

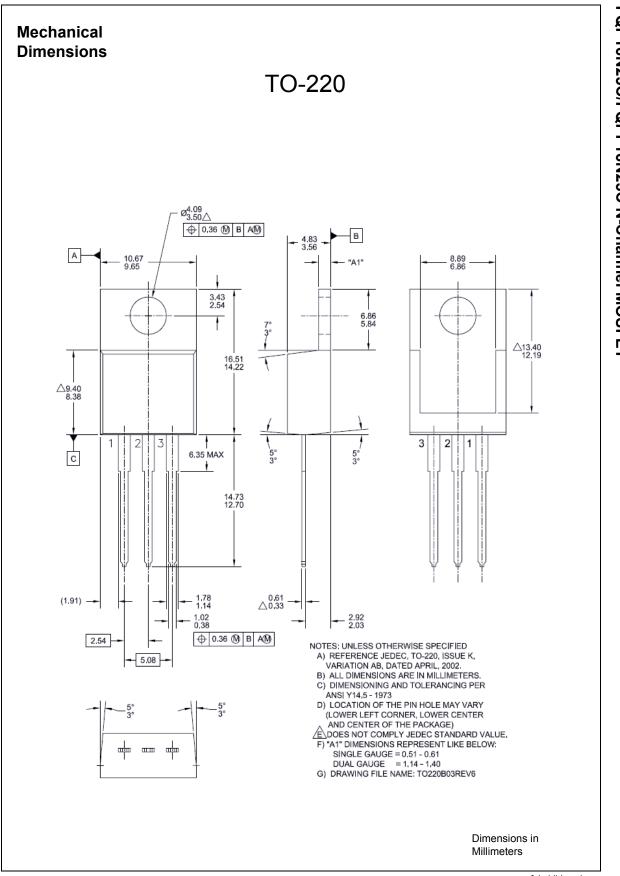
©2004 Fairchild Semiconductor Corporation FQP16N25C / FQPF16N25C Rev. C0

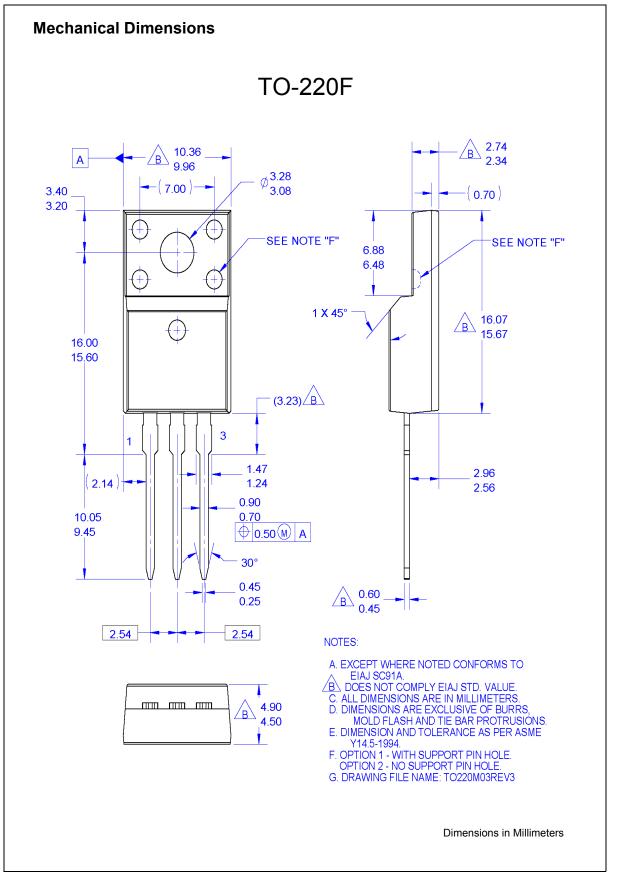

ABV _{DSS} Breakdo ∆T _J Coefficie DSS Zero Ga GSSF Gate-Bo GSSR Gate-Bo On Characteris VGS(th) Gate Th RDS(on) Static Dr On-Resi ØFS Forward Dynamic Chara Coss Output Ca Coss Output Ca Crss Reverse Switching Chara d(on) Turn-On r Turn-On d(off) Turn-Off f Turn-Off	burce Breakdown Voltage wm Voltage Temperature ent te Voltage Drain Current dy Leakage Current, Forward dy Leakage Current, Reverse stics reshold Voltage rain-Source stance Transconductance acteristics upacitance Capacitance Transfer Capacitance Transfer Capacitance Delay Time Rise Time	$\begin{array}{c} V_{GS} = 0 \ V, \ I_D = 250 \ \mu A \\ I_D = 250 \ \mu A, \ Referenced \ to \ 25 \\ V_{DS} = 250 \ V, \ V_{GS} = 0 \ V \\ V_{DS} = 200 \ V, \ T_C = 125^\circ C \\ V_{GS} = 30 \ V, \ V_{DS} = 0 \ V \\ V_{GS} = -30 \ V, \ V_{DS} = 0 \ V \\ \end{array}$	250 °C 2.0 te 4) te 4)	 0.31 0.22 10.5 830 170 68	 10 100 100 -100 4.0 0.27 1080 220 89	V μA μA nA nA NA PF pF pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	burce Breakdown Voltage wm Voltage Temperature ent te Voltage Drain Current dy Leakage Current, Forward dy Leakage Current, Reverse stics reshold Voltage rain-Source stance Transconductance acteristics upacitance Capacitance Transfer Capacitance Transfer Capacitance Delay Time Rise Time	$I_{D} = 250 \ \mu\text{A}, \text{Referenced to } 250 \ \text{V}_{DS} = 250 \ \text{V}, \ \text{V}_{GS} = 0 \ \text{V}$ $V_{DS} = 200 \ \text{V}, \ \text{T}_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, \ \text{V}_{DS} = 0 \ \text{V}$ $V_{GS} = -30 \ \text{V}, \ \text{V}_{DS} = 0 \ \text{V}$ $V_{DS} = V_{GS}, \ \text{I}_{D} = 250 \ \mu\text{A}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 7.8 \ \text{A}$ $V_{DS} = 40 \ \text{V}, \ \text{I}_{D} = 7.8 \ \text{A}$ $V_{DS} = 25 \ \text{V}, \ \text{V}_{GS} = 0 \ \text{V}, \ \text{f} = 1.0 \ \text{MHz}$ $V_{DD} = 125 \ \text{V}, \ \text{I}_{D} = 15.6 \ \text{A}, \ \text{Mo}$	·°C 2.0 te 4)	0.31 0.22 10.5 830 170 68	 10 100 -100 4.0 0.27 1080 220	V/°C μA μA nA NA V Ω S PF pF
ΔBV _{DSS} Breakdo ΔT _J Coefficie DSS Zero Ga GSSF Gate-Bo GSSR Gate-Bo On Characteris VGS(th) Gate Th RDS(on) Static Dr On-Resi Or Forward Dynamic Chara Coss Output Ca Coss Output Ca Criss Reverse Switching Chara d(on) Turn-On r Turn-Off f Turn-Off	wn Voltage Temperature ent te Voltage Drain Current dy Leakage Current, Forward dy Leakage Current, Reverse stics reshold Voltage rain-Source stance Transconductance acteristics upacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$I_{D} = 250 \ \mu\text{A}, \text{Referenced to } 250 \ \text{V}_{DS} = 250 \ \text{V}, \ \text{V}_{GS} = 0 \ \text{V}$ $V_{DS} = 200 \ \text{V}, \ \text{T}_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, \ \text{V}_{DS} = 0 \ \text{V}$ $V_{GS} = -30 \ \text{V}, \ \text{V}_{DS} = 0 \ \text{V}$ $V_{DS} = V_{GS}, \ \text{I}_{D} = 250 \ \mu\text{A}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 7.8 \ \text{A}$ $V_{DS} = 40 \ \text{V}, \ \text{I}_{D} = 7.8 \ \text{A}$ $V_{DS} = 25 \ \text{V}, \ \text{V}_{GS} = 0 \ \text{V}, \ \text{f} = 1.0 \ \text{MHz}$ $V_{DD} = 125 \ \text{V}, \ \text{I}_{D} = 15.6 \ \text{A}, \ \text{Mo}$	·°C 2.0 te 4)	0.31 0.22 10.5 830 170 68	 10 100 -100 4.0 0.27 1080 220	V/°C μA μA nA NA V Ω S PF pF
DSS Zero Ga GSSF Gate-Bo GSSR Gate-Bo On Characteris V _{GS} (th) Gate Th RDS(on) Static Dr On-Resi	te Voltage Drain Current dy Leakage Current, Forward dy Leakage Current, Reverse stics reshold Voltage rain-Source stance Transconductance acteristics apacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$\begin{split} & V_{DS} = 200 \text{ V}, \text{T}_{\text{C}} = 125^{\circ}\text{C} \\ & V_{GS} = 30 \text{V}, \text{V}_{DS} = 0 \text{V} \\ & V_{GS} = -30 \text{V}, \text{V}_{DS} = 0 \text{V} \\ & V_{DS} = \text{V}_{\text{GS}}, \text{I}_{\text{D}} = 250 \mu\text{A} \\ & V_{\text{GS}} = 10 \text{V}, \text{I}_{\text{D}} = 7.8 \text{A} \\ & V_{DS} = 40 \text{V}, \text{I}_{\text{D}} = 7.8 \text{A} \\ & V_{DS} = 25 \text{V}, \text{V}_{\text{GS}} = 0 \text{V}, \\ \text{f} = 1.0 \text{MHz} \\ \\ & V_{DD} = 125 \text{V}, \text{I}_{\text{D}} = 15.6 \text{A}, \end{split}$	 2.0 te 4) 	 0.22 10.5 830 170 68	100 100 -100 4.0 0.27 1080 220	μΑ nA nA V Ω S PF
GSSF Gate-Bo GSSR Gate-Bo GSSR Gate-Bo On Characteris VGS(th) Gate Th RDS(on) Static Dr On-Resi ØFS Forward Dynamic Chara Ciss Input Ca Coss Output C Crss Reverse Switching Chara G(on) Turn-On r Turn-On fd(off) Turn-Off	dy Leakage Current, Forward dy Leakage Current, Reverse stics reshold Voltage rain-Source stance Transconductance acteristics apacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$\begin{split} & V_{DS} = 200 \text{ V}, \text{T}_{\text{C}} = 125^{\circ}\text{C} \\ & V_{GS} = 30 \text{V}, \text{V}_{DS} = 0 \text{V} \\ & V_{GS} = -30 \text{V}, \text{V}_{DS} = 0 \text{V} \\ & V_{DS} = \text{V}_{\text{GS}}, \text{I}_{\text{D}} = 250 \mu\text{A} \\ & V_{\text{GS}} = 10 \text{V}, \text{I}_{\text{D}} = 7.8 \text{A} \\ & V_{DS} = 40 \text{V}, \text{I}_{\text{D}} = 7.8 \text{A} \\ & V_{DS} = 25 \text{V}, \text{V}_{\text{GS}} = 0 \text{V}, \\ \text{f} = 1.0 \text{MHz} \\ \\ & V_{DD} = 125 \text{V}, \text{I}_{\text{D}} = 15.6 \text{A}, \end{split}$	 2.0 te 4) 	 0.22 10.5 830 170 68	100 100 -100 4.0 0.27 1080 220	μΑ nA nA V Ω S PF
GSSR Gate-Bo On Characteris Gate Th /GS(th) Gate Th RDS(on) Static Dr On-Resi On-Resi ØFS Forward Oynamic Chara Cass Coss Output Cass Criss Reverse Switching Chara d(on) r Turn-On d(off) Turn-Off f Turn-Off	dy Leakage Current, Reverse stics reshold Voltage rain-Source stance Transconductance acteristics apacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_D = 7.8 \text{ A}$ $V_{DS} = 40 \text{ V}, I_D = 7.8 \text{ A}$ $(No$ $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$ $V_{DD} = 125 \text{ V}, I_D = 15.6 \text{ A},$	 2.0 te 4) 	 0.22 10.5 830 170 68	100 -100 4.0 0.27 1080 220	nA nA V Ω S PF pF
GSSR Gate-Bo On Characteris V _{GS} (th) Gate Th R _{DS} (on) Static Dr On-Resi ØFS Forward Dynamic Chara C _{iss} Input Ca C _{iss} Output C C _{rss} Reverse Switching Chara d(on) Turn-On r Turn-On d(off) Turn-Off f Turn-Off	dy Leakage Current, Reverse stics reshold Voltage rain-Source stance Transconductance acteristics apacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_D = 7.8 \text{ A}$ $V_{DS} = 40 \text{ V}, I_D = 7.8 \text{ A}$ (No $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$ $V_{DD} = 125 \text{ V}, I_D = 15.6 \text{ A},$	2.0 te 4) 	 0.22 10.5 830 170 68	4.0 0.27 1080 220	V Ω S pF
V _{GS(th)} Gate Th R _{DS(on)} Static Dr On-Resi On-Resi BFS Forward Dynamic Chara Ciss Input Ca Coss Output C Crss Reverse Switching Chara d(on) Turn-On r Turn-Off f Turn-Off	reshold Voltage rain-Source stance Transconductance acteristics actance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7.8 \text{ A}$ $V_{DS} = 40 \text{ V}, \text{ I}_{D} = 7.8 \text{ A} (\text{No}$ $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$ $V_{DD} = 125 \text{ V}, \text{ I}_{D} = 15.6 \text{ A},$	te 4)	0.22 10.5 830 170 68	0.27 1080 220	Ω S pF pF
V _{GS(th)} Gate Th R _{DS(on)} Static Dr On-Resi On-Resi BFS Forward Dynamic Chara Ciss Input Ca Coss Output C Crss Reverse Switching Chara d(on) Turn-On r Turn-Off f Turn-Off	reshold Voltage rain-Source stance Transconductance acteristics actance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7.8 \text{ A}$ $V_{DS} = 40 \text{ V}, \text{ I}_{D} = 7.8 \text{ A} (\text{No}$ $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$ $V_{DD} = 125 \text{ V}, \text{ I}_{D} = 15.6 \text{ A},$	te 4)	0.22 10.5 830 170 68	0.27 1080 220	Ω S pF pF
RDS(on) Static Dr On-Resi DFS Forward Dynamic Chara Ciss Ciss Input Ca Coss Output C Crss Reverse Switching Chara Cid(on) Gr Turn-On Go(off) Turn-Off	rain-Source stance Transconductance acteristics pacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7.8 \text{ A}$ $V_{DS} = 40 \text{ V}, \text{ I}_{D} = 7.8 \text{ A} (\text{No}$ $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$ $V_{DD} = 125 \text{ V}, \text{ I}_{D} = 15.6 \text{ A},$	te 4)	0.22 10.5 830 170 68	0.27 1080 220	Ω S pF pF
On-Resi Drs Forward Dynamic Chara Ciss Input Ca Coss Output C Crss Reverse Switching Cha Cid(on) Turn-On Cid(off) Turn-Off F Turn-Off	stance Transconductance acteristics apacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 7.8 \text{ A} (\text{No}$ $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$ $V_{DD} = 125 \text{ V}, \text{ I}_{D} = 15.6 \text{ A}, \text{ A}$	te 4) 	10.5 830 170 68	 1080 220	S pF pF
Dynamic Chara Ciss Input Ca Coss Output Ca Crss Reverse Switching Chara d(on) Turn-On r Turn-Off f Turn-Off	acteristics pacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz V _{DD} = 125 V, I _D = 15.6 A,		830 170 68	1080 220	pF pF
Ciss Input Ca Coss Output C Crss Reverse Switching Cha G(on) Gr Turn-On Gr(off) Turn-Off Fr Turn-Off	pacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	f = 1.0 MHz V _{DD} = 125 V, I _D = 15.6 A,		170 68	220	pF
Ciss Input Ca Coss Output C Crss Reverse Switching Cha G(on) Gr Turn-On Gr(off) Turn-Off Fr Turn-Off	pacitance Capacitance Transfer Capacitance racteristics Delay Time Rise Time	f = 1.0 MHz V _{DD} = 125 V, I _D = 15.6 A,		170 68	220	pF
Coss Output C Crss Reverse Switching Cha Image: Chase of the second secon	Capacitance Transfer Capacitance racteristics Delay Time Rise Time	f = 1.0 MHz V _{DD} = 125 V, I _D = 15.6 A,		170 68	220	pF
C _{rss} Reverse Switching Cha d _(on) Turn-On r Turn-On d _(off) Turn-Off f Turn-Off	Transfer Capacitance racteristics Delay Time Rise Time	V _{DD} = 125 V, I _D = 15.6 A,		68		
Switching Cha d(on) Turn-On r Turn-On d(off) Turn-Off f Turn-Off	racteristics Delay Time Rise Time	55 5			00	
d(on) Turn-On r Turn-On d(off) Turn-Off f Turn-Off	Delay Time Rise Time	55 5		15		
r Turn-On d(off) Turn-Off f Turn-Off	Rise Time	55 5		15		
d _(off) Turn-Off f Turn-Off		55 5		15	40	ns
f Turn-Off				130	270	ns
	Delay Time			135	280	ns
ଦ _g Total Ga	Fall Time	(Note	4, 5)	105	220	ns
	te Charge	V _{DS} = 200 V, I _D = 15.6 A,		41	53.5	nC
ସୁ _{gs} Gate-So	urce Charge	V _{GS} = 10 V		5.6		nC
ସୁ _{gd} Gate-Dra	ain Charge	(Note	4, 5)	22.7		nC
	Diode Characteristics a			1	45.0	
o	aximum Continuous Drain-Source Diode Forward Current				15.6	A
					62.4	A
	Durce Diode Forward Voltage	$V_{GS} = 0 V, I_S = 15.6 A$ $V_{GS} = 0 V, I_S = 15.6 A,$			1.5	V
	Recovery Time		 te 4)	260		ns
Q _{rr} Reverse	Recovery Charge			2.47		μC
L = 2.7mH, I _{AS} = 15.6A, V						



©2004 Fairchild Semiconductor Corporation FQP16N25C / FQPF16N25C Rev. C0




©2004 Fairchild Semiconductor Corporation FQP16N25C / FQPF16N25C Rev. C0



FQP16N25C/FQPF16N25C N-Channel MOSFET

FQP16N25C/FQPF16N25C N-Channel MOSFET

FQP16N25C/FQPF16N25C N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP[®]* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED[®]** Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS[™] Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

FPS™

PowerTrench® PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure[™] ng our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3

Sync-Lock™ TinyBoost TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™ $\mathcal{M}_{\scriptscriptstyle{\mathsf{Ser}}}$ UHC® Ultra FRFET™ UniFFT™ VCX™

VisualMax™

XS™

VoltagePlus™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

R

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SuperSOT™-6

SuperSOT™-8 SupreMOS®

SyncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 16