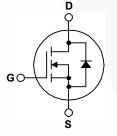

N-Channel QFET[®] MOSFET 600 V, 4.5 A, 2.5 Ω

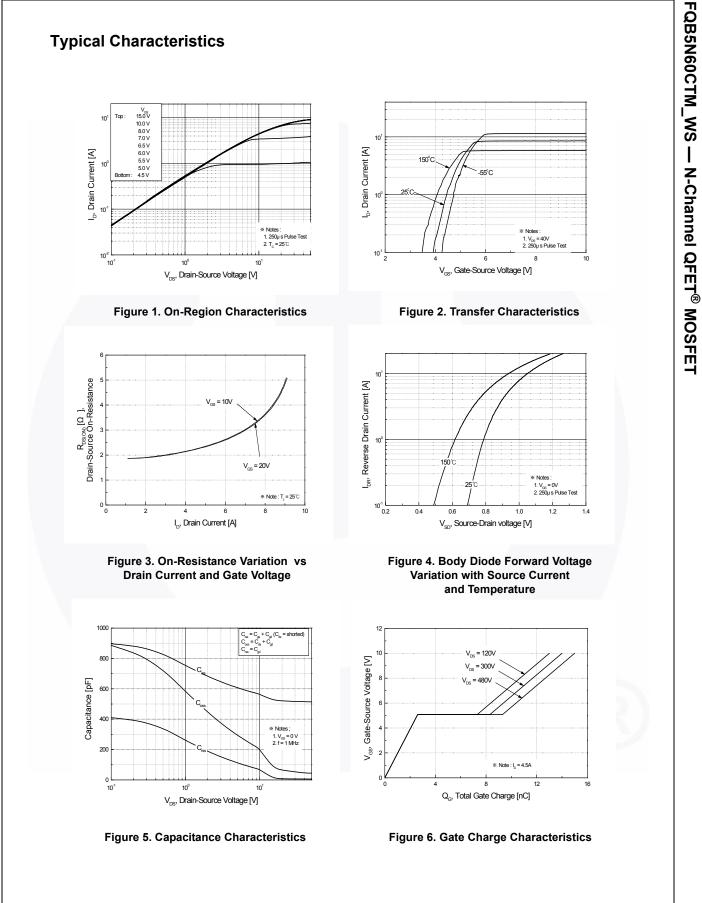

Features

- 4.5 A, 600 V, $R_{DS(on)}$ = 2.5 Ω (Max.) @V_{GS} = 10 V, I_D = 2.1 A
- Low Gate Charge (Typ. 15 nC)
- Low Crss (Typ. 6.5 pF)
- 100% Avalanche Tested

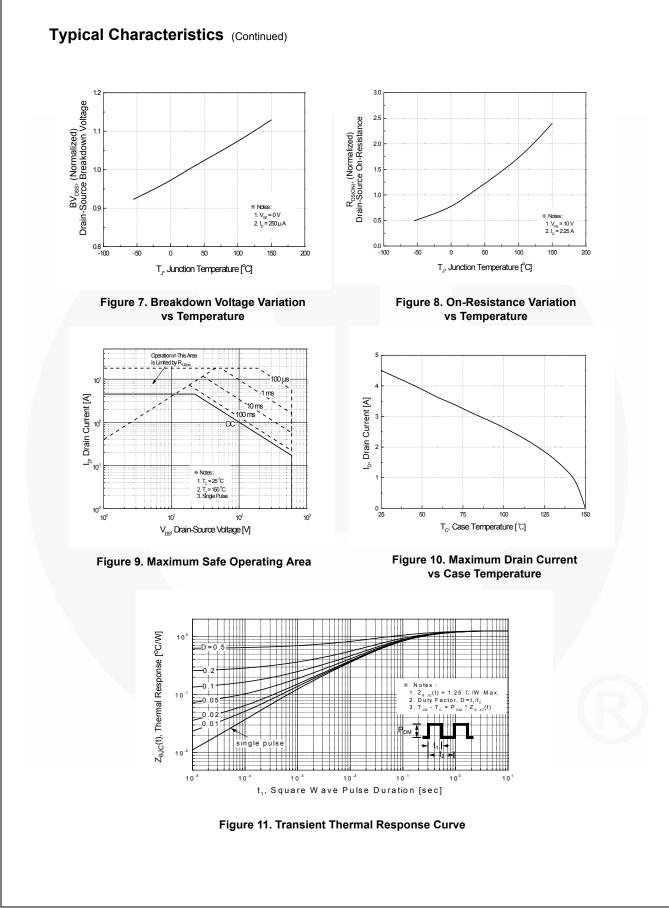
Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

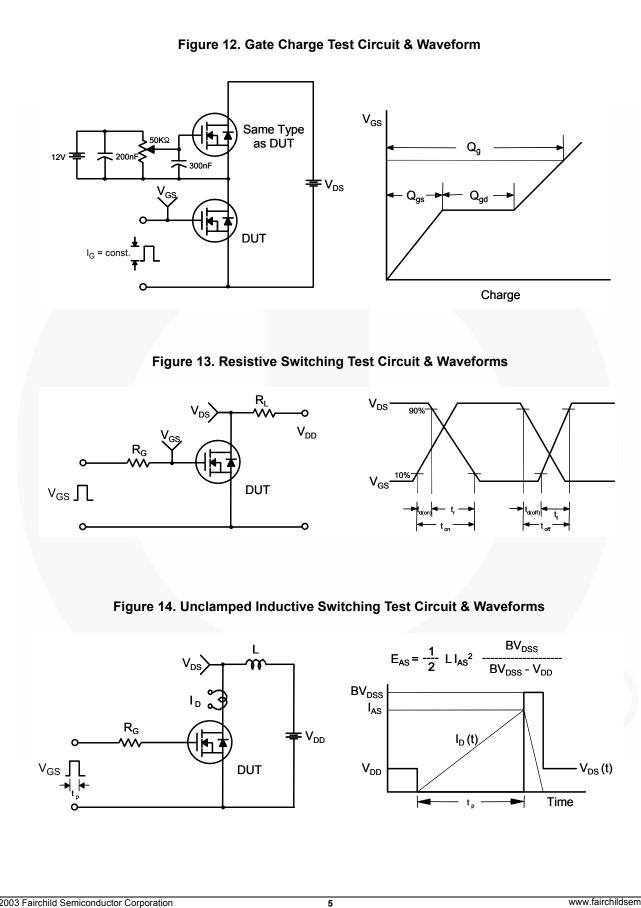
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

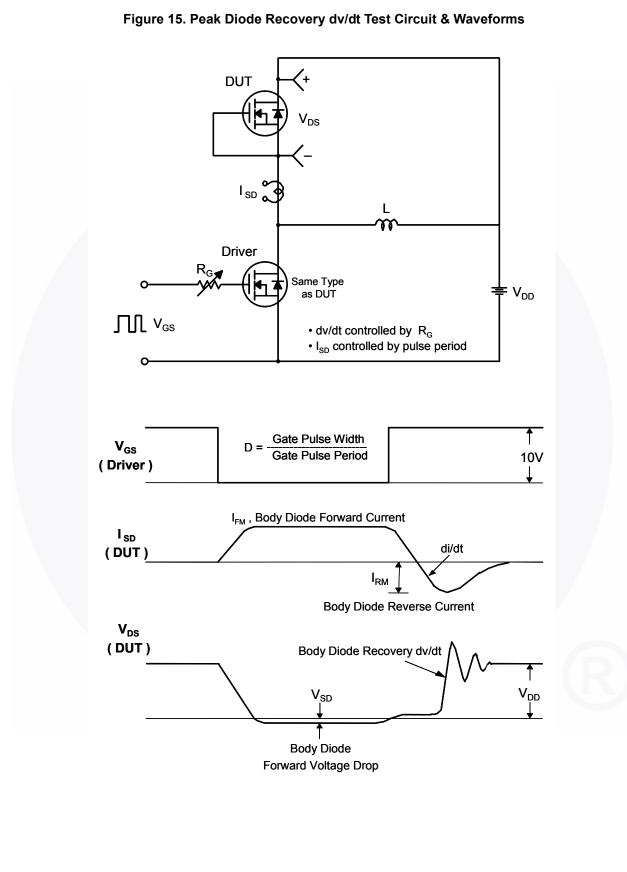

Symbol	Parameter		FQB5N60CTM_WS	Unit	
V _{DSS}	Drain-Source Voltage		600	V	
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		4.5	А	
	- Continuous (T _C = 100°C)		2.6	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	18	А	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	210	mJ	
I _{AR}	Avalanche Current	(Note 1)	4.5	A	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	10	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns	
PD	Power Dissipation (T _C = 25°C)		100	W	
гD	- Derate Above 25°C		0.8	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering,		300	°C	
	1/8" from Case for 5 Seconds		000	U	

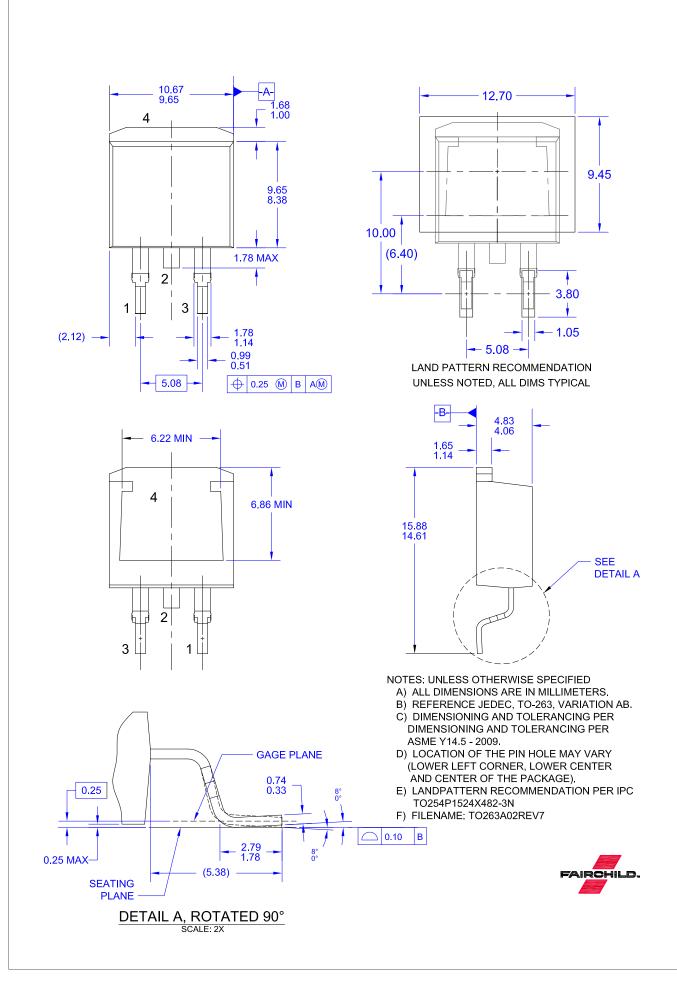
Thermal Characteristics

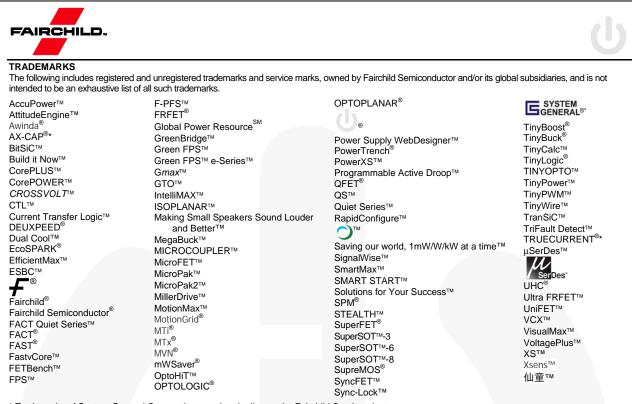

Symbol	Parameter	FQB5N60CTM_WS	Unit	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	1.25		
Р	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	62.5	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient (1 in ² Pad of 2-oz Copper), Max.	40		

June 2015


	Interfactor of the set	Part	Number	Top Mark	Package	Package Packing Method Reel		ze	Tape Wid	lth	Quantity	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SymbolParameterTest ConditionsMinTypMaxOff Characteristics BV_{DSS} Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 250 \ \mu$ A, Referenced to 25° C0.6 ΔBV_{DSS} Breakdown Voltage Temperature $I_D = 250 \ \mu$ A, Referenced to 25° C0.6 I_DSS Zero Gate Voltage Drain Current $V_{DS} = 600 \ V, V_{GS} = 0 \ V$ 10 I_{GSSF} Gate-Body Leakage Current, Forward $V_{CS} = 30 \ V, V_{DS} = 0 \ V$ 100 I_{GSSF} Gate-Body Leakage Current, Reverse $V_{GS} = -30 \ V, V_{DS} = 0 \ V$ 100On CharacteristicsVSet Threshold Voltage $V_{DS} = V_{GS} \ I_D = 250 \ \mu$ A2.04.0 $P_{DS(m)}$ Static Drain-Source $V_{DS} = 10 \ V, I_D = 2.25 \ A$ 2.02.5 g_{FS} Forward Transconductance $V_{DS} = 25 \ V, V_{GS} = 0 \ V, I_D = 2.25 \ A$ 4.7Dynamic CharacteristicsVSet $Transfer Capacitance$ $V_{DS} = 25 \ V, V_{GS} = 0 \ V, I_D = 2.25 \ A$ 4.7 $Switching CharacteristicsVSet Transfer CapacitanceV_{DS} = 300 \ V, I_D = 4.5 \ A, V_{CS} = 10 \ V, I_D = 2.55 \ \Omega4.290V_{doff}Turn-On Rise TimeV_{DS} = 480 \ V, I_D = 4.5 \ A, V_{CS} = 10 \ V, V_{CS$	FQB5N6	60CTM_WS	FQB5N60CS	D ² -PAK	Tape and Reel	330 mr	n	24 mm	I	800 units	
	Off CharacteristicsBVDSS Drain-Source Breakdown Voltage $V_{GS} = 0 V, I_D = 250 \mu A$ 600 $$ $$ ΔBV_{DSS} ΔTJ Coefficient $I_D = 250 \mu A$, Referenced to $25^\circ C$ $$ 0.6 $$ I_DSS Zero Gate Voltage Drain Current $V_{DS} = 600 V, V_{GS} = 0 V$ $$ $$ 10 I_{GSSF} Gate-Body Leakage Current, Forward $V_{GS} = 30 V, V_{DS} = 0 V$ $$ $$ 100 I_{GSSR} Gate-Body Leakage Current, Reverse $V_{GS} = -30 V, V_{DS} = 0 V$ $$ $$ 100 On CharacteristicsVGS = $V_{GS}, I_D = 250 \mu A$ 2.0 $$ 4.0 Ros(m)Static Drain-Source On CharacteristicsV_{GS}(m)Gate Threshold Voltage $V_{DS} = 40 V, I_D = 2.25 A$ $$ 2.0 2.5 g_{FS} Forward Transconductance $V_{DS} = 25 V, V_{GS} = 0 V,$ $$ 515 670 CrassInput Capacitance $V_{DS} = 25 V, V_{GS} = 0 V,$ $$ 515 670 Crass $$ 4.7 Dynamic CharacteristicsSwitching CharacteristicsVDS = 25 V, V_{GS} = 0 V, $$ 515 670 $$ 6.5 Switching CharacteristicsSwitching Characteristics(Note 4)(Note 4) $$ 10 <td cols<="" th=""><th>ectri</th><th>cal Chara</th><th>cteristics T_C = 25</th><th>°C unless oth</th><th>nerwise noted.</th><th></th><th></th><th></th><th></th><th></th></td>	<th>ectri</th> <th>cal Chara</th> <th>cteristics T_C = 25</th> <th>°C unless oth</th> <th>nerwise noted.</th> <th></th> <th></th> <th></th> <th></th> <th></th>	ectri	cal Chara	cteristics T _C = 25	°C unless oth	nerwise noted.					
	BVDSS DABVDSS ΔBVDSSDrain-Source Breakdown VoltageVGS = 0 V, ID = 250 μA600 $\Delta BVDSSΔBVDSSBreakdown Voltage TemperatureCoefficientID = 250 μA, Referenced to 25°C0.6IDSSZero Gate Voltage Drain CurrentVDS = 600 V, VGS = 0 V1IDSSFGate-Body Leakage Current, ForwardVGS = 30 V, VDS = 0 V10IGSSFGate-Body Leakage Current, ReverseVGS = -30 V, VDS = 0 V100On CharacteristicsVGS(In)Gate Threshold VoltageVDS = VGS, ID = 250 μA2.04.0Ros(on)Static Drain-SourceOn-ResistanceVDS = 40 V, ID = 2.25 A2.02.59FSForward TransconductanceVDS = 25 V, VGS = 0 V,ID = 2.25 A4.7Dynamic CharacteristicsCissInput CapacitanceInput CapacitanceF = 1.0 MHz6.58.5Switching CharacteristicsVig(on)Turn-On Delay TimeVGS = 10 V, RG = 25 Ω4.61004Turn-On Belay TimeVGS = 10 V, RG = 25 Ω4.61004Turn-Off Fall TimeQgVDS = 480 V, ID = 4.5 A,VGS = 10 V15194Gate-Drain ChargeVDS = 480 V, ID = 4.5 A,VGS = 10 V15190.66.60Gate-Source ChargeQgdGate-Source ChargeVDS = 10 V$	Symbol		Parameter		Test Conditions		Min	Тур	Max	Unit	
	BVDSS DABVDSS ΔBVDSSDrain-Source Breakdown VoltageVGS = 0 V, ID = 250 μA600 $\Delta BVDSSΔBVDSSBreakdown Voltage TemperatureCoefficientID = 250 μA, Referenced to 25°C0.6IDSSZero Gate Voltage Drain CurrentVDS = 600 V, VGS = 0 V1IDSSFGate-Body Leakage Current, ForwardVGS = 30 V, VDS = 0 V10IGSSFGate-Body Leakage Current, ReverseVGS = -30 V, VDS = 0 V100On CharacteristicsVGS(In)Gate Threshold VoltageVDS = VGS, ID = 250 μA2.04.0Ros(on)Static Drain-SourceOn-ResistanceVDS = 40 V, ID = 2.25 A2.02.59FSForward TransconductanceVDS = 25 V, VGS = 0 V,ID = 2.25 A4.7Dynamic CharacteristicsCissInput CapacitanceInput CapacitanceF = 1.0 MHz6.58.5Switching CharacteristicsVig(on)Turn-On Delay TimeVGS = 10 V, RG = 25 Ω4.61004Turn-On Belay TimeVGS = 10 V, RG = 25 Ω4.61004Turn-Off Fall TimeQgVDS = 480 V, ID = 4.5 A,VGS = 10 V15194Gate-Drain ChargeVDS = 480 V, ID = 4.5 A,VGS = 10 V15190.66.60Gate-Source ChargeQgdGate-Source ChargeVDS = 10 V$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1		$V_{co} = 0$	$1_{\rm D} = 250 \mu A$		600			V	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							000			v	
				ollage remperature	I _D = 250	μA, Referenced to 25°	°C		0.6		V/°C	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Zara Cata Ma	Iters Desig Current	V _{DS} = 60	0 V, V _{GS} = 0 V				1	μA	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} I_{GSSR} & Gate-Body Leakage Current, Reverse} & V_{GS} = -30 \ V, V_{DS} = 0 \ V & & & -100 \ \hline \\ \hline \\ \textbf{On Characteristics} & & & & & & & & & & & & & & & & & & &$	DSS	Zero Gate vo	litage Drain Current	V _{DS} = 48	0 V, T _C = 125°C				10	μA	
	On CharacteristicsVGS(th)Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ 2.04.0 $R_{DS(on)}$ Static Drain-Source On-Resistance $V_{GS} = 10 \ V$, $I_D = 2.25 \ A$ 2.02.5 g_{FS} Forward Transconductance $V_{DS} = 40 \ V$, $I_D = 2.25 \ A$ 4.7Dynamic CharacteristicsClassInput Capacitance $V_{DS} = 25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ 5156702CrssReverse Transfer Capacitance $V_{DS} = 25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ 5156702Switching CharacteristicsSwitching CharacteristicsV_DS = 25 V, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ 5156702CrssReverse Transfer Capacitance $V_{DS} = 25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ 5572Switching CharacteristicsSwitching Characteristics(Note 4)1030 $V_{CS} = 10 \ V$, $R_G = 25 \ \Omega$ 4.61000 Q_g Turn-Off Fall Time $V_{DS} = 480 \ V, \ I_D = 4.5 \ A,$ $V_{GS} = 10 \ V$ 1519 Q_{23} Gate Charge $V_{DS} = 480 \ V, \ I_D = 4.5 \ A,$ $V_{CS} = 10 \ V$ 1519 Q_{24} Gate Charge $V_{DS} = 10 \ V$ 1519 Q_{24} Gate-Drain ChargeVolspan="2">(Note 4) <td>IGSSF</td> <td>Gate-Body Lo</td> <td>eakage Current, Forward</td> <td>V_{GS} = 30</td> <td>V, V_{DS} = 0 V</td> <td></td> <td></td> <td></td> <td>100</td> <td>nA</td>	IGSSF	Gate-Body Lo	eakage Current, Forward	V _{GS} = 30	V, V _{DS} = 0 V				100	nA	
		I _{GSSR}	Gate-Body Lo	eakage Current, Reverse	$V_{GS} = -3$	0 V, V _{DS} = 0 V				-100	nA	
		On Cha	aracteristics	5								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1		$V_{DS} = V_{C}$	_{GS} , I _D = 250 μA		2.0		4.0	V	
g_{FS} Forward Transconductance $V_{DS} = 40 \text{ V}, I_D = 2.25 \text{ A}$ 4.7 S Dynamic Characteristics Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 515 670 p C_{DSS} Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 555 72 p C_{rss} Reverse Transfer Capacitance $r = 1.0 \text{ MHz}$ 6.5 8.5 p Switching Characteristics $r = 1.0 \text{ MHz}$ 10 30 n $t_a(on)$ Turn-On Rise Time $V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A},$ 10 30 n $t_a(off)$ Turn-Off Delay Time $V_{DS} = 10 \text{ V}, R_G = 25 \Omega$ 15 19 n $t_a(f)$ Turn-Off Fall Time $V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A},$ 15 19 n q_{gg} Gate-Source Charge $V_{DS} = 10 \text{ V}$ 15 19 n q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 4.5 <td>g_{FS}Forward Transconductance$V_{DS} = 40 \text{ V}, I_D = 2.25 \text{ A}$$4.7$Dynamic Characteristics$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$$$$515$$670$$C_{oss}$Output Capacitance$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$$$$515$$670$$C_{rss}$Reverse Transfer Capacitance$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$$$$6.5$$8.5$Switching Characteristics$V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 25 \Omega$$$$10$$30$$t_r$Turn-On Rise Time$V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 25 \Omega$$$$4.6$$100$$q_g$Total Gate Charge$V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$$$$15$$19$$q_{gd}$Gate-Drain Charge$V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$$$$2.5 \text{ H}$Drain-Source Diode Characteristics and Maximum Ratings</td> <td>_</td> <td></td> <td></td> <td>V_{GS} = 10</td> <td>V, I_D = 2.25 A</td> <td></td> <td></td> <td>2.0</td> <td>2.5</td> <td>Ω</td>	g_{FS} Forward Transconductance $V_{DS} = 40 \text{ V}, I_D = 2.25 \text{ A}$ 4.7 Dynamic Characteristics $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ $$ 515 670 C_{oss} Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ $$ 515 670 C_{rss} Reverse Transfer Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ $$ 6.5 8.5 Switching Characteristics $V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 25 \Omega$ $$ 10 30 t_r Turn-On Rise Time $V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 25 \Omega$ $$ 4.6 100 q_g Total Gate Charge $V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$ $$ 15 19 q_{gd} Gate-Drain Charge $V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$ $$ 2.5 H Drain-Source Diode Characteristics and Maximum Ratings	_			V _{GS} = 10	V, I _D = 2.25 A			2.0	2.5	Ω	
Dynamic Characteristics VDS = 25 V, VGS = 0 V, f = 1.0 MHz 515 670 p Coss Output Capacitance f = 1.0 MHz 55 72 p Crss Reverse Transfer Capacitance f = 1.0 MHz 6.5 8.5 p Switching Characteristics 6.5 8.5 p td(on) Turn-On Delay Time VDD = 300 V, ID = 4.5 A, VGS = 0 V, RG = 25 \Omega 42 90 n td(off) Turn-Off Belay Time VDS = 480 V, ID = 4.5 A, VGS = 10 V 46 100 n Qg Gate-Charge VDS = 480 V, ID = 4.5 A, VGS = 10 V 15 19 nr Qgs Gate-Drain Charge VDS = 480 V, ID = 4.5 A, VGS = 10 V 2.5 nr Drain-Source Diode Characteristics and Maximum Ratings 10 nr Is Maximum Pulsed Drain-Source Diode Forward Current 4.5 A Is Maximum Pulsed Drain-Source Diode Forward Current	Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 515670 C_{oss} Output Capacitancef = 1.0 MHz5572 C_{rss} Reverse Transfer Capacitance6.58.5Switching Characteristicstd(on)Turn-On Delay Time $V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A},$ 1030trTurn-On Rise Time $V_{GS} = 10 \text{ V}, R_G = 25 \Omega$ 4290td(off)Turn-Off Delay Time $V_{OS} = 480 \text{ V}, I_D = 4.5 \text{ A},$ 1030tqTurn-Off Fall Time $V_{OS} = 10 \text{ V}, R_G = 25 \Omega$ 46100QgTotal Gate Charge $V_{OS} = 10 \text{ V}$ 1519QgdGate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.6Drain-Source Diode Characteristics and Maximum Ratings	9 _{ES}			V _{DS} = 40	V, I _D = 2.25 A			4.7		S	
Coss Output Capacitance f = 1.0 MHz 55 72 p C_{rss} Reverse Transfer Capacitance f = 1.0 MHz 6.5 8.5 p Switching Characteristics Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 300 V, I_D = 4.5 A, V_{GS} = 10 V, R_G = 25 \Omega$ 10 30 n $t_{d(off)}$ Turn-Off Delay Time $V_{CS} = 10 V, R_G = 25 \Omega$ 46 100 n $t_{d(off)}$ Turn-Off Fall Time $V_{DS} = 480 V, I_D = 4.5 A, V_{GS} = 10 V$ 46 100 n Ω_{g} Total Gate Charge $V_{DS} = 480 V, I_D = 4.5 A, V_{GS} = 10 V$ 15 19 n Ω_{g} Gate-Drain Charge $V_{GS} = 10 V$ 16.6 n Ω_{gd} Gate-Drain Charge $V_{GS} = 10 V$ 6.6 n D_{gd} Gate-Drain Charge $V_{GS} = 0 V, I_S = 4.5 A$ 4.5 A	C_{oss} Output Capacitance $f = 1.0 \text{ MHz}$ $$ 55 72 C_{rss} Reverse Transfer Capacitance $f = 1.0 \text{ MHz}$ $$ 6.5 8.5 Switching Characteristics $V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A},$ $$ 10 30 $t_{d(on)}$ Turn-On Rise Time $V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A},$ $$ 10 30 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_G = 25 \Omega$ $$ 42 90 $t_{d(off)}$ Turn-Off Fall Time $V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A},$ $$ 46 100 Q_g Total Gate Charge $V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A},$ $$ 15 19 Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $$ 2.5 C Drain-Source Diode Characteristics and Maximum Ratings	-	1		V - 25				515	670	pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C_{rss} Reverse Transfer Capacitance6.58.5Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 300 \text{ V}, \text{ I}_D = 4.5 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_G = 25 \Omega$ 1030 $t_{d(off)}$ Turn-Off Delay Time $V_{OD} = 300 \text{ V}, \text{ I}_D = 4.5 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_G = 25 \Omega$ 4290 $t_{d(off)}$ Turn-Off Fall Time $V_{OD} = 4.5 \text{ A},$ $V_{OS} = 480 \text{ V}, \text{ I}_D = 4.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ 46100 Q_{gs} Gate-Source Charge $V_{DS} = 480 \text{ V}, \text{ I}_D = 4.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ 1519 Q_{gd} Gate-Drain Charge $V_{OS} = 10 \text{ V}$ $(Note 4)$ 6.6Drain-Source Diode Characteristics and Maximum Ratings						-				pF	
Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 25 \Omega$ 1030n $t_{d(off)}$ Turn-On Rise Time $V_{CS} = 10 \text{ V}, R_G = 25 \Omega$ 4290n $t_{d(off)}$ Turn-Off Delay Time \cdots 3885n $t_{q(off)}$ Turn-Off Fall Time \cdots 46100n Q_g Total Gate Charge $V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$ 1519 Q_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 2.5n Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.6nDrain-Source Diode Characteristics and Maximum Ratings I_S Maximum Continuous Drain-Source Diode Forward Current1.4V V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},1.4VV_{SD}Drain-Source Diode Forward Current1.4VV_{SD}Drain-Source Diode Forward VoltageV_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},1.4VV_{rr}Reverse Recovery TimeV_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},300nQ_{rr}Reverse Recovery ChargeU_{f} dt = 100 A/\mus2.2\mu$	Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $t_{d(on)}$ Turn-On Rise Time t_r Turn-On Rise Time $t_{d(off)}$ Turn-Off Delay Time $t_{d(off)}$ Turn-Off Fall Time t_f Turn-Off Fall Time Q_g Total Gate Charge Q_{gs} Gate-Source Charge Q_{gd} Gate-Drain Charge $V_{GS} = 10 V$ $Turn-Off Fall Charge$ $V_{GS} = 10 V$ $V_{GS} = 10 V$ $V_{GS} = 10 V$ $Turn-Off Fall Charge$ $V_{GS} = 10 V$ $Turn-Off Characteristics and Maximum Ratings$				1 - 1.0 W	112					pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Switchi	ing Charact	oristics			Л					
Turn-On Rise Time $V_{DD} = 300 \text{ V}, \text{ Ib} = 4.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ Rg} = 25 \Omega$ 42 90 n $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, \text{ Rg} = 25 \Omega$ 46 100 n Q_g Total Gate Charge $V_{DS} = 480 \text{ V}, \text{ Ib} = 4.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$ 46 100 n Q_{gs} Gate-Source Charge $V_{DS} = 480 \text{ V}, \text{ Ib} = 4.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$ 15 19 ni Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.6 n Drain-Source Diode Characteristics and Maximum Ratings (Note 4) 6.6 n Is Maximum Pulsed Drain-Source Diode Forward Current 4.5 A Is Maximum Pulsed Drain-Source Diode Forward Current 18 A VsD Drain-Source Diode Forward Voltage V_{GS} = 0 \text{ V}, \text{ Is} = 4.5 \text{ A}, 1.4 N VsD Drain-Source Diode Forward Voltage V_{GS} = 0 \text{ V}, \text{ Is} = 4.5 \text{ A}, 1.4 N Qrr Reverse Rec	trTurn-On Rise Time $V_{DD} = 300 \text{ V}, \text{ I}_D = 4.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_G = 25 \Omega$ 4290 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, \text{ R}_G = 25 \Omega$ 3885 t_f Turn-Off Fall Time (Note 4) 46100 Q_g Total Gate Charge $V_{DS} = 480 \text{ V}, \text{ I}_D = 4.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$ 1519 Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.6Drain-Source Diode Characteristics and Maximum Ratings								10	30	ns	
t_d(off)Turn-Off Delay Time $V_{GS} = 10 \text{ V}, \text{ K}_G = 23 \Omega$ 3885n q_g Turn-Off Fall Time $V_{DS} = 480 \text{ V}, \text{ I}_D = 4.5 \text{ A},$ 46100n Q_{gs} Gate-Charge $V_{DS} = 480 \text{ V}, \text{ I}_D = 4.5 \text{ A},$ 1519n Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.6n Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.6nDrain-Source Diode Characteristics and Maximum RatingsIsMaximum Continuous Drain-Source Diode Forward Current1.8AIsMaximum Pulsed Drain-Source Diode Forward Current1.4NVSDDrain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ 1.4N V_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, \text{ I}_S = 4.5 \text{ A},$ 2.2n Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 \text{ A}/\mu s$ 2.2 μ	Turn-Off Delay Time VGS = 10 V, KG = 23 M 38 85 tr Turn-Off Fall Time (Note 4) 46 100 Qg Total Gate Charge V _{DS} = 480 V, I _D = 4.5 A, 15 19 Qgd Gate-Drain Charge V _{GS} = 10 V (Note 4) 6.6 Drain-Source Diode Characteristics and Maximum Ratings Maximum Ratings 6.6					-	-				ns	
trTurn-Off Fall Time(Note 4)46100n Q_g Total Gate Charge $V_{DS} = 480 \ V, \ I_D = 4.5 \ A,$ 1519n Q_{gs} Gate-Source Charge $V_{GS} = 10 \ V$ $(Note 4)$ 2.5n Q_{gd} Gate-Drain Charge $V_{GS} = 10 \ V$ $(Note 4)$ 6.6nDrain-Source Diode Characteristics and Maximum RatingsIs Maximum Continuous Drain-Source Diode Forward Current4.5A I_S Maximum Pulsed Drain-Source Diode Forward Current18A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \ V, \ I_S = 4.5 \ A,$ 1.4N V_{Tr} Reverse Recovery Time $V_{GS} = 0 \ V, \ I_S = 4.5 \ A,$ 300n Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 \ A/\mu s$ 2.2 μ	Turn-Off Fall Time (Note 4) 46 100 Qg Total Gate Charge V _{DS} = 480 V, I _D = 4.5 A, 15 19 Qgs Gate-Source Charge V _{GS} = 10 V 2.5 Qgd Gate-Drain Charge (Note 4) 6.6 Drain-Source Diode Characteristics and Maximum Ratings Maximum Ratings				$V_{GS} = 10$	V, $R_G = 25 \Omega$	-				ns	
Q_g Total Gate Charge $V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$ 1519nr Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $(Note 4)$ 2.5nrDrain-Source Diode Characteristics and Maximum RatingsIsMaximum Continuous Drain-Source Diode Forward Current4.5A I_{SM} Maximum Pulsed Drain-Source Diode Forward Current18A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},1.4NV_{Tr}Reverse Recovery TimeV_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},300nrQ_{rr}Reverse Recovery ChargedI_F / dt = 100 \text{ A}/\mu \text{s}2.2\mu$	Qg QgsTotal Gate Charge $V_{DS} = 480 \text{ V}, \text{ I}_D = 4.5 \text{ A}, V_{DS} = 4.5 \text{ A}, V_{DS} = 10 \text{ V}$ 1519QgdGate-Drain ChargeV_{GS} = 10 \text{ V}2.5Drain-Source Diode Characteristics and Maximum Ratings						(Note 4)				ns	
Q_{gs} Gate-Source Charge $V_{GS} = 10 \ V$ $$ $2.5 \$ $$ nr Q_{gd} Gate-Drain Charge $V_{GS} = 10 \ V$ $(Note 4)$ $$ $6.6 \$ nr Drain-Source Diode Characteristics and Maximum RatingsIs Maximum Continuous Drain-Source Diode Forward Current $$ $$ $4.5 \ A$ I_{SM} Maximum Pulsed Drain-Source Diode Forward Current $$ $$ $1.8 \ A$ V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \ V, I_S = 4.5 \ A$ $$ $$ $1.4 \ V_{ST}$ Q_{rr} Reverse Recovery Time $V_{GS} = 0 \ V, I_S = 4.5 \ A,$ $$ $300 \$ nr Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 \ A/\mu s$ $$ $2.2 \$ μ	Q _{gs} Gate-Source Charge V _{GS} = 10 V 2.5 Q _{gd} Gate-Drain Charge V _{GS} = 10 V (Note 4) 6.6 Drain-Source Diode Characteristics and Maximum Ratings	-			$V_{-} = 48$	0 V = 45 A					nC	
Q_{gd} Gate-Drain ChargeImage: Constraint of the second s	Q _{gd} Gate-Drain Charge (Note 4) 6.6 Drain-Source Diode Characteristics and Maximum Ratings	-		-		-					nC	
Drain-Source Diode Characteristics and Maximum Ratings I_S Maximum Continuous Drain-Source Diode Forward Current4.5A I_{SM} Maximum Pulsed Drain-Source Diode Forward Current18A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 4.5 A$ 1.4A t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, $I_S = 4.5 A$,300n Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 A/\mu s$ 2.2 μ	Drain-Source Diode Characteristics and Maximum Ratings	-	Gate-Drain C	harge		•	(Note 4)		6.6		nC	
IsMaximum Continuous Drain-Source Diode Forward Current4.5AIsMMaximum Pulsed Drain-Source Diode Forward Current18AVSDDrain-Source Diode Forward Voltage $V_{GS} = 0 V$, Is = 4.5 A1.4V t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, Is = 4.5 A,300n Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 A/\mu s$ 2.2 μ						Detin ve				/		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						-				4.5	A	
V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 4.5 A$ 1.4V t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, $I_S = 4.5 A$,300n Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 A/\mu s$ 2.2 μ	Ism Maximum Pulsed Drain-Source Diode Forward Current 18										A	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											V	
Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 \text{ A/}\mu\text{s}$ 2.2 μ				0							ns	
				,		•	-				μC	
DTES:	DTES:								-1			




FQB5N60CTM_WS Rev. 1.0



FQB5N60CTM_WS — N-Channel QFET[®] MOSFET

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.