
FJY3008R NPN Epitaxial Silicon Transistor

Features

- · Switching circuit, Inverter, Interface circuit, Driver Circuit
- Built in bias Resistor (R1=47KΩ, R2=22KΩ)
- Complement to FJY4008R

Absolute Maximum Ratings * T_a = 25°C unless otherwise noted

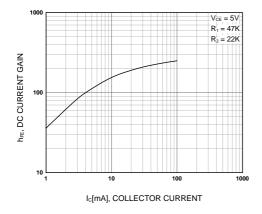
Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	50	V
V _{CEO}	Collector-Emitter Voltage	50	V
V _{EBO}	Emitter-Base Voltage	10	V
I _C	Collector Current	100	mA
T _{STG}	Storage Temperature Range	-55~150	°C
TJ	Junction Temperature	150	°C
P _C	Collector Power Dissipation, by $R_{\theta JA}$	200	mW

These ratings are limiting values above which the serviceability of any semiconductor device may by impaired.

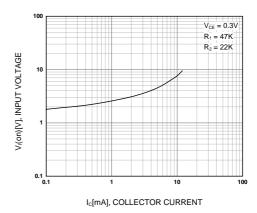
Thermal Characteristics* Ta=25°C unless otherwise noted

Symbol	Parameter	Мах	Units
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	600	°C/W

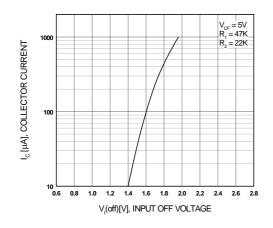
Minimum land pad size.

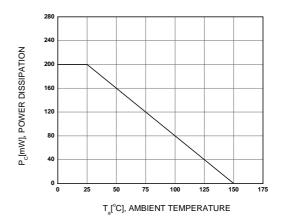

Electrical Characteristics* T_c = 25°C unless otherwise noted

ector-Emitter Breakdown Voltage ector-Base Breakdown Voltage ector-Cutoff Current Current Gain ector-Emitter Saturation Voltage	Ic = 10 uA, IE = 0 $Ic = 100 uA, IB = 0$ $VcB = 40 V, IE = 0$ $VcE = 5 V, Ic = 5 mA$ $Ic = 10 mA, IB = 0.5 mA$	50 50 56		0.1	V V uA
ector-Cutoff Current	$V_{CB} = 40 \text{ V}, I_E = 0$ $V_{CE} = 5 \text{ V}, I_C = 5 \text{ mA}$			0.1	-
Current Gain	Vce = 5 V, Ic = 5 mA	56		0.1	uA
	,	56		1	
ector-Emitter Saturation Voltage	$l_{c} = 10 \text{ mA}$, $l_{B} = 0.5 \text{ mA}$				
				0.3	V
ent Gain - Bandwidth Product	Vce = 10V, Ic = 5 mA		250		MHz
ut Capacitance	Vcb = 10 V, IE = 0, f = 1.0 MHz		3.7		pF
t Off Voltage	Vce = 5 V, Ic = 100uA	0.8			V
t On Voltage	Vce = 0.3V, Ic = 2mA			4	V
Resistor		32	47	62	KΩ
ator Patia		1.9	2.1	2.4	
	On Voltage	On Voltage VcE = 0.3V, Ic = 2mA Resistor Image: Constraint of the second secon	On Voltage VcE = 0.3V, Ic = 2mA Resistor 32	On Voltage VcE = 0.3V, Ic = 2mA Resistor 32 47	On Voltage V _{CE} = 0.3V, Ic = 2mA 4 Resistor 32 47 62


July 2007

Typical Performance Characteristics


Figure 1. DC current Gain


Figure 2. Input On Voltage

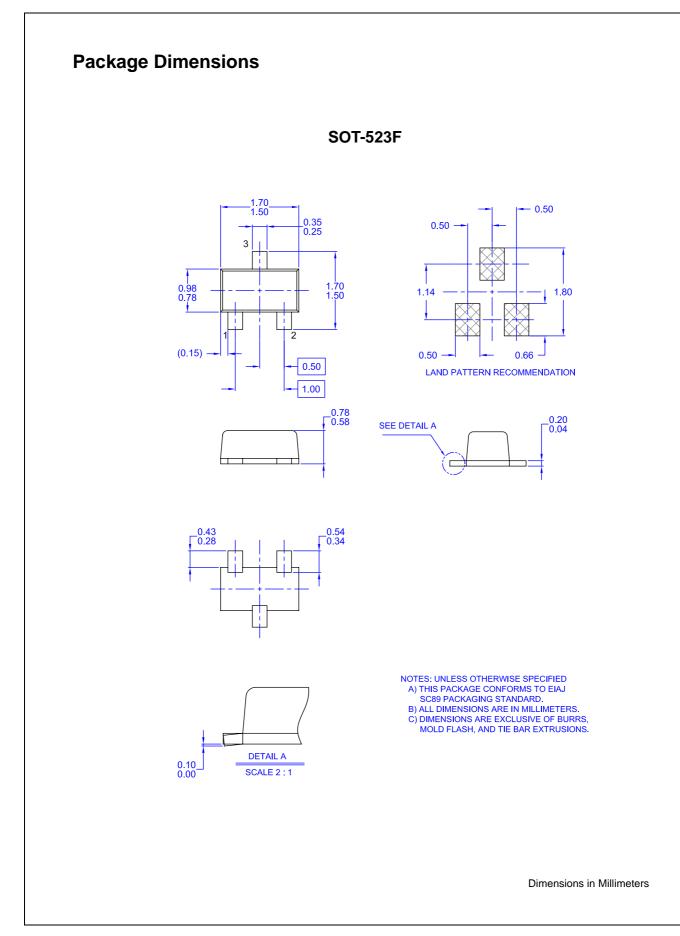


Figure 3. Input off Voltage

Figure 4. Power Derating

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

. ®		
ACEx®	HiSeC™	PowerSaver™
Across the board. Around the world.™	<i>i-Lo</i> ™	PowerTrench [®]
ActiveArray™	ImpliedDisconnect [™]	Programmable /
Bottomless™	IntelliMAX™	QFET®
Build it Now™	ISOPLANAR™	QS™
CoolFET™	MICROCOUPLER™	QT Optoelectror
CROSSVOLT™	MicroPak™	Quiet Series™
CTL™	MICROWIRE™	RapidConfigure
Current Transfer Logic™	Motion-SPM [™]	RapidConnect™
DOME™	MSX™	ScalarPump™
E ² CMOS™	MSXPro™	SMART START
EcoSPARK [®]	OCX™	SPM®
EnSigna™	OCXPro™	STEALTH™
FACT Quiet Series™	OPTOLOGIC [®]	SuperFET™
FACT [®]	OPTOPLANAR [®]	SuperSOT™-3
FAST [®]	PACMAN™	SuperSOT™-6
FASTr™	PDP-SPM™	SuperSOT™-8
FPS™	POP™	SyncFET™
FRFET [®]	Power220 [®]	TCM™
GlobalOptoisolator™	Power247 [®]	The Power Fran
GTO™	PowerEdge™	ம™

erTrench[®] rrammable Active Droop[™] T[®] Dptoelectronics[™] et Series[™] idConfigure[™] idConnect[™] larPump[™] ART START[™] ART START[™] ALTH[™] erFET[™] erFET[™] erSOT[™]-3 erSOT[™]-3 erSOT[™]-6 erSOT[™]-8 crFET[™] AT[™] Power Franchise[®] $\label{eq:states} TinyBoost^{\mathsf{TM}} \\ TinyBuck^{\mathsf{TM}} \\ TinyLogic^{\textcircled{tmm}} \\ TINYOPTO^{\mathsf{TM}} \\ TinyPower^{\mathsf{TM}} \\ TinyWire^{\mathsf{TM}} \\ TruTranslation^{\mathsf{TM}} \\ \muSerDes^{\mathsf{TM}} \\ UHC^{\textcircled{tmm}} \\ UHC^{\textcircled{tmm}} \\ VCX^{\mathsf{TM}} \\ Wire^{\mathsf{TM}} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 125