FHP3392 — Fixed－Gain，± 5 V，Triple 2：1，High－Speed Video Multiplexer

Features

－ 0.1 dB gain flatness to 102 MHz at $2 \mathrm{~V}_{\mathrm{PP}}$
－9ns channel switching time
－$<0.02 \% / 0.03^{\circ}$ differential gain／phase error
－ 750 MHz large signal -3 dB bandwidth
－ $2,600 \mathrm{~V} / \mu$ s slew rate
－ 60 mA output current（easily drives two video loads）
－ 70 dB channel to channel isolation
－ 25 mA supply current
－ 7 mA supply current when disabled
－Fully specified at $\pm 5 \mathrm{~V}$ supplies
－Lead－free TSSOP－24 package

Applications

－RGB video switchers and routers
－Multiple input HDTV switching
－Picture－in－picture video switch
－Multi－channel ADC Driver

Description

The FHP3392 $(\mathrm{G}=2)$ is a triple 2：1 analog multiplexer designed for high－speed video applications．The output amplifiers offer a fixed gain of 6 dB and stellar large signal performance of $335 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth and $80 \mathrm{MHz} \quad 0.1 \mathrm{~dB}$ bandwidth．The $2 \mathrm{~V}_{\mathrm{PP}}$ bandwidth performance and $1,600 \mathrm{~V} / \mu$ s slew rate exceed the requirements of high－definition television（HDTV）and other multimedia applications．The output amplifier provides ample output current to drive multiple video loads．

The FHP3392 may be operated with dual power supplies from $\pm 2.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ ．

The FHP3392 consumes only 25 mA of supply current and offer disable capability．While disabled，it consumes only 7 mA and the outputs become high impedance，allowing multiplexer expansion with multiple FHP3392s．

Ordering Information

Part Number	Pb－ Free	Gain	Operating Temperature Range	Packing Method	
FHP3392IMTC $24 X$	Yes	6 dB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24－Lead，Thin Shrink Outline Package，JEDEC MO－153， 4.4 mm Wide	Tape and Reel

Moisture sensitivity level for all parts is MSL－1．

Block Diagram and Pin Configuration

Figure 1. Block Diagram and Pin Configuration

Pin Definitions

Pin \#	Name	Description
1	IN1A	1st Input Channel A
2	DGND	Digital Ground, must be connected to ground
3	IN2A	2nd Input Channel A
4	GND	Must be connected to ground
5	$1 N 3 A$	3rd Input Channel A
6	+ Vs	Positive supply
7	- Vs	Negative supply
8	IN3B	3rd Input Channel B
9	GND	Must be connected to ground
10	IN2B	2nd Input Channel B
11	GND	Must be connected to ground
12	IN1B	1st Input Channel B
13	$+V_{S}$	Positive supply
14	$+D V s$	Digital positive supply
15	$-V_{s}$	Negative supply
16	OUT3	3rd output
17	+ Vs	Positive supply
18	OUT3	2nd output
19	$-V_{S}$	Negative supply
20	OUT1	1st Output
21	$+V_{S}$	Logic input; "0" = Channel A, "1" = Channel B
22	SEL $\overline{\text { A/B }}$	Enable pin; "0" = Enable, "1" = Disable; Enabled if left floating or grounded
23	$\overline{\text { EN }}$	Enable Pin: "0" = Channel A, "1" = Channel B
24	$+V_{s}$	Positive supply

Truth Table

SEL $\overline{\mathbf{A}} / \mathbf{B}$	$\overline{\mathbf{E N}}$	OUT
0	0	Channel A
1	0	Channel B
X	1	Disable

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	0	13.3	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage Range	$-\mathrm{V}_{\mathrm{S}}-0.5$	$+\mathrm{V}_{\mathrm{S}}+0.5 \mathrm{~V}$	V

Electrostatic Discharge Protection

Symbol	Parameter	Min.	Max.	Unit
ESD	Human Body Model (HBM)		3	kV
	Charged Device Model (CDM)		12	kV

Reliability Information

Symbol	Parameter	Min.	Typ.	Max.	Unit
T_{J}	Junction Temperature			150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	-65		150	${ }^{\circ} \mathrm{C}$
T_{RF}	Reflow Temperature			260	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance		87		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

1. Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ JEDEC standard, multi-layer test boards, in still air.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Typ.	Max.	Unit
T_{A}	Operating Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$
V_{cc}	Supply Voltage Range	± 2.5	± 5.0	± 6.0	V

Electrical Characteristics at $\pm 5 \mathrm{~V}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$; unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Frequency Domain Response						
BW ${ }_{\text {ss }}$	-3dB Bandwidth	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {PP }}$		750		MHz
BW ${ }_{\text {Ls }}$	Large Signal Bandwidth	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}_{\text {PP }}$		560		MHz
BW 0.1 dBSs	0.1dB Gain Flatness	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {PP }}$		117		MHz
$\mathrm{BW}_{0.1 \mathrm{dBLS}}$	0.1dB Gain Flatness	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}_{\mathrm{PP}}$		102		MHz

Time Domain Response

t_{s}	Settling Time to 0.1\%	Vout $=2 \mathrm{~V}$ step		4		ns
SR	Slew Rate	4V step		2600		$\mathrm{~V} / \mu \mathrm{s}$

Distortion / Noise Response

HD2	Second Harmonic Distortion	$2 \mathrm{~V}_{\text {PP, }} 5 \mathrm{MHz}$	-85	dBc
HD3	Third Harmonic Distortion	$2 \mathrm{~V}_{\text {PP, }}$, 5 MHz	-90	dBc
THD	Total Harmonic Distortion	$2 \mathrm{~V}_{\text {PP, }} 5 \mathrm{MHz}$	-84	dB
		$2 \mathrm{~V}_{\text {PP, }}$, 22MHz	-72	dB
DG	Differential Gain	NTSC (3.58MHz)	0.04	\%
DP	Differential Phase	NTSC (3.58MHz)	0.01	-
e_{n}	Input Voltage Noise	$>1 \mathrm{MHz}$	6.75	$\mathrm{nV} / \mathrm{Hz}$
i_{n}	Input Current Noise	$>1 \mathrm{MHz}$	22	$\mathrm{pA} / \mathrm{Hz}$
SNR	Signal-to-Noise Ratio	NTC-7 weighting, 4.2 MHz LP filter, 100 kHz PH filter	90	dB
$X_{\text {talk }}$	All Hostile Crosstalk	$\begin{aligned} & \mathrm{V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{PP}} \text {, ch-to-ch, } \\ & 5 \mathrm{MHz} \end{aligned}$	-59	dB
		$\begin{aligned} & \mathrm{V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{PP}} \text {, ch-to-ch, } \\ & 30 \mathrm{MHz} \end{aligned}$	-56	

DC Performance

Vos	Output Offset Voltage ${ }^{(2)}$	$\mathrm{V}_{\text {IN }}=0$	-18	2	18	mV
$\mathrm{Ib}^{\text {b }}$	Input Bias Current ${ }^{(2)}$		-30	4	30	$\mu \mathrm{A}$
G	Gain ${ }^{(2)}$	DC	1.9	2.0	2.1	V/V
GM	Gain Matching	Channel-to-channel, DC		0.05		\%
PSRR	Power Supply Rejection Ratio ${ }^{(2)}$	$D C, V_{C M}=0$, input referred, SEL = X	54	62		dB
Is	Supply Current ${ }^{(2)}$	No load, $\overline{\mathrm{EN}}=0$		25	30	mA
$l_{\text {EN }}$	Disable Supply Current ${ }^{(2)}$	$\overline{\mathrm{EN}}=1$		7	10	mA

Switching Characteristics

T_{s}	Switching Time 50\% Logic to:	Channel-to channel				
	90% Output (10\% Output Setting) $)^{(3)}$	Ch A inputs $=+0.5 \mathrm{~V}$ Ch B inputs $=-0.5 \mathrm{~V}$		17.3		ns
	99% Output (1\% Output Setting) $)^{(3)}$	Ch A inputs $=+0.5 \mathrm{~V}$ Ch B inputs $=-0.5 \mathrm{~V}$		36	ns	
$\mathrm{~V}_{\text {Sw }}$	Channel Switching Transient (Glitch)	All inputs grounded		34	mV	

Notes:

2. 100% tested at 25°.
3. EN pin is grounded, channel A inputs $=0.5 \mathrm{~V}$, channel B inputs $=-0.5 \mathrm{~V}$. Switching time is the transition time from 50% of SEL input value $(+2.5 \mathrm{~V}$) to the time at which the switched channel is at 90% (or 99%) of its final value.

Electrical Characteristics at $\mathbf{\pm 5 V}$ (Continued)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$; unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Digital Inputs						
V_{IH}	Logic HIGH Threshold	SEL and $\overline{\mathrm{EN}}$ pins ${ }^{(4)}$	2.0			V
$\mathrm{V}_{\text {IL }}$	Logic LOW Threshold	SEL and $\overline{\mathrm{EN}}$ pins ${ }^{(4)}$			0.8	V
$\mathrm{IIH}^{\text {H}}$	Logic Pin Input Current HIGH	SEL and $\overline{E N}$ pins; Logic Input $=2 \mathrm{~V}$		27		$\mu \mathrm{A}$
$1 / 1$	Logic Pin Input Current LOW	SEL and EN pins; Logic Input $=0 \mathrm{~V}$		0		$\mu \mathrm{A}$
Disable Characteristics						
ENiso	Disable Isolation	$\frac{5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{PP}},}{\mathrm{EN}=1}$		-81		dB
		$\begin{aligned} & \frac{30 M H z}{\mathrm{EN}}=1 \end{aligned}$		-66		dB
$\mathrm{CH}_{\text {Iso }}$	Channel-to-Channel Isolation	5 MHz		-71		dB
ENTon	Turn-on-Time (Disable to ON)	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		30		ns
ENToff	Turn-off-Time (ON to Disable)	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		65		ns
Input Characteristics						
$\mathrm{R}_{\text {IN }}$	Input Resistance			115		$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			10		pF
$\mathrm{V}_{\text {IN }}$	Input Voltage Range			± 2		V
Output Characteristics						
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		± 4		V
		$\mathrm{R}_{\mathrm{L}}=150 \Omega^{(4)}$	± 3.2	± 3.7		V
lout	Linear Output Current			± 95		mA
Isc	Short Circuit Output Current	$\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$		± 100		mA
Rout	Output Resistance, Closed Loop	$\begin{aligned} & \text { Enabled, } \overline{\mathrm{EN}}=1 \text {, } \\ & 100 \mathrm{kHz} \end{aligned}$		0.17		Ω
		$\begin{aligned} & \text { Disabled, } \overline{\mathrm{EN}}=1 \text {, } \\ & 100 \mathrm{kHz} \end{aligned}$		675		Ω
Cout	Output Capacitance	$\begin{aligned} & \text { Disabled, } \overline{\mathrm{EN}}=1 \text {, } \\ & 10 \mathrm{kH} 7 \mathrm{l} \end{aligned}$		2.7		pF

Note:

4. 100% tested at 25°.

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

DIMENSIONS ARE IN MILLIMETERS

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AD DATE 10/97.

DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994
E. DRAWING FILE NAME: MTC24REV4

MTC24REV4

DETAIL A

Figure 2. 24-Lead,Thin Shrink Outline Package, JEDEC MO-153, 4.4mm Wide

FAIRCHILD

SEMICONDUCTロR•

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\left({ }^{\text {a }}\right.}$	Green FPS ${ }^{\text {TM }}$	Power247 ${ }^{\left({ }^{\text {® }}\right.}$	SuperSOT ${ }^{\text {m }}$ - 8
Build it Now ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {TM }}$	POWEREDGE ${ }^{\text {® }}$	SyncFET ${ }^{\text {TM }}$
CorePLUS ${ }^{\text {m }}$	$\mathrm{GTO}^{\text {m }}$	Power-SPM ${ }^{\text {TM }}$	The Power Franchise ${ }^{\left({ }^{\text {® }}\right.}$
CROSSVOLT ${ }^{\text {mm }}$	i - $\mathrm{LO}^{\text {m }}$	PowerTrench ${ }^{(8)}$	${ }^{\text {the }}$ wer
CTL ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	Programmable Active Droop ${ }^{\text {TM }}$	franchise
Current Transfer Logic ${ }^{\text {Tm }}$	ISOPLANAR ${ }^{\text {TM }}$	QFET ${ }^{(8)}$	TinyBoost ${ }^{\text {TM }}$
Ecospark ${ }^{(8)}$	MegaBuck ${ }^{\text {m }}$	QS ${ }^{\text {m }}$	TinyBuck ${ }^{\text {TM }}$
Ψ	MICROCOUPLER ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyLogic ${ }^{(8)}$
Fairchild ${ }^{(8)}$	MicroFET ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {Tm }}$	TINYOPTO ${ }^{\text {TM }}$
Fairchild Semiconductor ${ }^{(8)}$	MicroPak ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
FACT Quiet Series ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {Tm }}$
FACT ${ }^{\text {® }}$	OPTOLOGIC ${ }^{(18}$	SPM ${ }^{(8)}$	TinyWire ${ }^{\text {Tm }}$
FAST ${ }^{\text {® }}$	OPTOPLANAR ${ }^{(8)}$	STEALTH ${ }^{\text {TM }}$	μ SerDes $^{\text {m }}$ m
FastvCore ${ }^{\text {tm }}$	(1) ${ }^{\text {® }}$	SuperFET ${ }^{\text {m }}$	$\mathrm{UHC}^{(8)}$
FPS ${ }^{\text {TM }}$	PDP-SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	UniFET ${ }^{\text {TM }}$
FRFET ${ }^{\text {® }}$	Power $220{ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-6	VCX ${ }^{\text {TM }}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.

