FEB 1 54－00 1 User＇s Guide Motor Control Evaluation Board Using the Motion－SPM ${ }^{\text {TM }}$（FSBB20CH60）in a Mini－DIP （ $44 \mathrm{~mm} \times 26.8 \mathrm{~mm}$ ）Package

Contents

1. Introduction... 3
1.1 Product Description .. 3
1.2 Circuit Description... 3
2. Designed Solution.. 4
2.1 Schematic ... 4
2.2 Bill of Materials .. 5
2.3 Printed Circuit Board ... 6

1. Introduction

This user's guide supports the FSBB20CH60 Motion-SPM ${ }^{\text {TM }}$ in a mini-DIP package evaluation board. It should be used in conjunction with the FSBB20CH60 data sheet and Fairchild's SPM application note AN-9035.

1.1 Product Description

Fairchild's Smart power Module (SPM ${ }^{\mathrm{TM}}$) products provide efficient motor control for energyrestricted low-power inverter-driven applications, such as washing machines and air conditioners. The FSBB20CH60 Motion-SPM ${ }^{\text {TM }}$ integrates three high-voltage ICs (HVICs), one low-voltage IC (LVIC), six IGBTs for three-phase inverter and six fast recovery diodes. Fairchild's Motion-SPM reduces board space by utilizing an ultra-compact $44 \mathrm{~mm} \times 26.8 \mathrm{~mm}$ Mini-DIP package and by incorporating built-in HVICs that provide an optocoupler-less, single supply IGBT gate driving capability. The FSBB20CH60 product offers designers high reliability with integrated under-voltage lock out (UVLO) and short circuit (SC) protection.

1.2 Circuit Description

The Motion-SPM is installed as the switching module in this evaluation board and has direct interface with the CPU using one shunt resistor. The $\mathrm{DC}-\operatorname{link}(\mathrm{P}$ and N$)$ input terminals are connected into the corresponding terminals in Motion-SPM and three-phase (U,V,W) output terminals from SPM are wired into motor input. Since the three HVICs are integrated in the Motion-SPM, 3 parts of bootstrap circuit are needed, which consists of bootstrap capacitor, charge resistor for charging boost capacitor, blocking diode for high voltage isolation. One shunt resistor is used for sensing short current and the related short current circuit is composed of an external shunt resistor and R-C low pass filter. The signal of fault output pin VFO drops from high level to low when a fault, such as UV (Under Voltage) or SC (Short Circuit), happens. A pull-up resistor and filter capacitor are needed to support this action. Six R-C low pass filters are used between input connector from a DSP controller (or other controllers) and gate input signal pins of Motion-SPM.

2. Designed Solution

2.1 Schematic

2.2 Bill of Materials

Part No.	Rating	Characteristics	Definition
R4	20W, 1/4W	Carbon Film Resistor (5\%)	Bootstrap Resistor (Phase U)
R8	20W, 1/4W	Carbon Film Resistor (5\%)	Bootstrap Resistor (Phase V)
R9	20W, 1/4W	Carbon Film Resistor (5\%)	Bootstrap Resistor (Phase W)
R10	1.8kW, 1/8W	Carbon Film Resistor (5\%)	Low-Pass-Filter for Current Sensing
R12	$4.7 \mathrm{~kW}, 1 / 8 \mathrm{~W}$	Carbon Film Resistor (5\%)	Pull-Up Resistor (Fault-Out)
R13	100W, 1/8W	Carbon Film Resistor (5\%)	Series Resistor for Signal Interface (UL)
R14	100W, 1/8W	Carbon Film Resistor (5\%)	Series Resistor for Signal Interface (VL)
R15	100W, 1/8W	Carbon Film Resistor (5\%)	Series Resistor for Signal Interface (WL)
R16	100W, 1/8W	Carbon Film Resistor (5\%)	Series Resistor for Signal Interface (Fault-Out)
R17	100W, 1/8W	Carbon Film Resistor (5\%)	Series Resistor for Signal Interface (UH)
R18	100W, 1/8W	Carbon Film Resistor (5\%)	Series Resistor for Signal Interface (VH)
R19	100W, 1/8W	Carbon Film Resistor (5\%)	Series Resistor for Signal Interface (WH)
R21	$15 \mathrm{~mW}, 5 \mathrm{~W}$	Non-inductive Resistor (1\%)	Shunt Resistor for Current Sensing (OC Level: about 33A)
R30	5.6W, 1/4W	Carbon Film Resistor (5\%)	Emitter Resistor for Switching
R34	5.6W, 1/4W	Carbon Film Resistor (5\%)	Emitter Resistor for Switching
R35	5.6W, 1/4W	Carbon Film Resistor (5\%)	Emitter Resistor for Switching
R51	Omit	Carbon Film Resistor (5\%)	Emitter Resistor for Switching - Refer to AN9035
R52	Omit	Carbon Film Resistor (5\%)	Emitter Resistor for Switching - Refer to AN9035
R53	Omit	Carbon Film Resistor (5\%)	Emitter Resistor for Switching - Refer to AN9035
C1	1 nF	Ceramic Capacitor	High-Side Pull-down Capacitor (Phase U)
C2	1 nF	Ceramic Capacitor	High-Side Pull-down Capacitor (Phase V)
C3	1 nF	Ceramic Capacitor	High-Side Pull-down Capacitor (Phase W)
C4	1 nF	Ceramic Capacitor	Bypass Capacitor for Current Sensing
C5	220~F, 35V	Electrolytic Capacitor	+15V Bias Voltage Source Capacitor
C6	100 nF	Ceramic Capacitor	Bypass Capacitor for Bootstrap Supply (Phase U)
C7	6.8uF, 35V	Electrolytic Capacitor	Bootstrap Capacitor (Phase U)
C8	100nF	Ceramic Capacitor	Bypass Capacitor for Bootstrap Supply (Phase V)
C9	6.8uF, 35V	Electrolytic Capacitor	Bootstrap Capacitor (Phase V)
C10	1 nF	Ceramic Capacitor	Low-Side Pull-down Capacitor (Phase U)
C11	1 nF	Ceramic Capacitor	Low-Side Pull- down Capacitor (Phase V)
C 12	1 nF	Ceramic Capacitor	Low-Side Pull- down Capacitor (Phase W)
C13	100nF	Ceramic Capacitor	Bypass Capacitor for Bootstrap Supply (Phase W)
C14	6.8رF, 35V	Electrolytic Capacitor	Bootstrap Capacitor (Phase W)

Part No.	Rating	Characteristics	
C15	$33 n F$	Ceramic Capacitor	Definition
C20	100nF, 630V	Film Capacitor	Capacitor for Selection of Fault Out Duration
C22	100 nF	Ceramic Capacitor	+5V Bias Voltage Bypass Capacitor
C23	1 nF	Ceramic Capacitor	By-pass Capacitor of Fault-Out Signal
C24	100нF, 16V	Electrolytic Capacitor	+5V Bias Voltage Source Capacitor
C26	1nF	Ceramic Capacitor	Bypass Capacitor for Fault-Out Signal
C27	1 FF	Ceramic Capacitor	+15V Bias Voltage Bypass Capacitor
C28	1nF	Ceramic Capacitor	Bypass Capacitor for Shunt Resistor
D1	1A, 600V	Fast Recovery Diode, (1N4937)	Bootstrap Diode (Phase U)
D2	1A, 600V	Fast Recovery Diode, (1N4937)	Bootstrap Diode (Phase V)
D3	1A, 600V	Fast Recovery Diode, (1N4937)	Bootstrap Diode (Phase W)
D7	Omit	Switching Diode (Gate turn-off path)	Emitter Diode for Switching - Refer to AN9035
D8	Omit	Switching Diode (Gate turn-off path)	Emitter Diode for Switching - Refer to AN9035
D15	Omit	Switching Diode (Gate turn-off path)	Emitter Diode for Switching - Refer to AN9035
U1	FSBB20CH60	Motion-SPM in Mini-DIP	

2.3 Printed Circuit Board

2.3.1 PCB Map

2.3.2 Circuit Layout Design

1. To avoid malfunction, the wiring of each input should be as short as possible. (less than $2-3 \mathrm{~cm}$)
2. To prevent protection function errors, the 'R10' and 'Csc' wiring should be as short as possible.
3. All the by-pass capacitors and filter capacitors should be placed very close to SPM.
4. The short-circuit protection time constant $\mathrm{R} 10 \bullet$ CSC should be set in the range of $1 \sim 2 \mu \mathrm{sec}$.
5. The isolation distance of DC-P, U-phase, V-phase, W-phase, DC-N/GND blocks should be over 2.54 mm (100 mil) for $300 \mathrm{~V}-500 \mathrm{~V}$ P-N voltage.
6. Power-GND and signal-GND should be connected with each other through only one $1.5 \sim 2 \mathrm{~mm}$ width pattern.
7. To prevent surge destruction, the wiring between the filter capacitor and the $P \&$ Ground pins should be as short as possible. The use of a high frequency non-inductive capacitor of around $0.1 \sim 0.22 \mu \mathrm{~F}$ between the $\mathrm{P} \&$ Ground pins is recommended. In addition to reducing local voltage spikes, the placement and quality of this capacitor will have a direct impact on both conducted and radiated EMI.

2.3.3 External Connection

Signal Interface (J)	1	High-Side Input Signal from CPU (Phase U)
	2	High-Side Input Signal from CPU (Phase V)
	3	High-Side Input Signal from CPU (Phase W)
	4	Low-Side Input Signal from CPU (Phase U)
	5	Low-Side Input Signal from CPU (Phase V)
	6	Low-Side Input Signal from CPU (Phase W)
	7	Fault-Out Signal to CPU
	8	NC
	9	SPM Bias Supply +5V Terminal
	10	SPM Bias Supply +15V Terminal
	11	SPM Bias Supply Ground Terminal
Power Connection	P	Positive DC Link Input Connection
	N	Negative DC Link Input Connection
	U	Motor Input Connection (Phase U)
	V	Motor Input Connection (Phase V)
	W	Motor Input Connection (Phase W)

2.3.4 Wiring of PCB

(a) Top Side View

(b) Bottom Side View

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list in the User's Guide. Contact an authorized Fairchild representative with any questions.

The Evaluation board is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express of implied, as to the applications or products involved. Fairchild warranties that its products will meet Fairchild's published specifications but does not guarantee that its products will work in any specific application. Fairchild reserves the right to makes changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer, or if no contract exists Fairchild's Stand Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks

ACEx ${ }^{\text {™ }}$	FAST ${ }^{\text {® }}$	IntelliMAX ${ }^{\text {TM }}$	POP ${ }^{\text {т }}$	SPM ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {™ }}$	Power247 ${ }^{\text {TM }}$	Stealth ${ }^{\text {TM }}$
Bottomless ${ }^{\text {™ }}$	FPS ${ }^{\text {™ }}$	LittleFET ${ }^{\text {tM }}$	PowerEdge ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$
CoolFET ${ }^{\text {tm }}$	FRFET ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {™ }}$	PowerSaver ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3
CROSSVOLT ${ }^{\text {m }}$	GlobalOptoisolator ${ }^{\text {TM }}$	MicroFET ${ }^{\text {M }}$	PowerTrench ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6
DOME ${ }^{\text {™ }}$	$\mathrm{GTO}^{\text {¹ }}$	MicroPak ${ }^{\text {TM }}$	QFET ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8
EcoSPARK ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {тм }}$	MICROWIRE ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$
$\mathrm{E}^{2} \mathrm{CMOS}{ }^{\text {™ }}$	$1^{2} C^{\text {TM }}$	MSX ${ }^{\text {™ }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
EnSigna ${ }^{\text {TM }}$	$i-L o^{\text {TM }}$	MSXPro ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTO ${ }^{\text {TM }}$
FACT ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	OCX ${ }^{\text {¹ }}$	RapidConfigure ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$		OCXPro ${ }^{\text {¹ }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
Across the board. Around the world. ${ }^{\text {TM }}$		OPTOLOGIC ${ }^{\circledR}$	μ SerDes ${ }^{\text {TM }}$	UltraFET ${ }^{\circledR}$
The Power Franchise ${ }^{\circledR}$		OPTOPLANAR ${ }^{\text {TM }}$	SILENT SWITCHER ${ }^{\text {® }}$	UniFET ${ }^{\text {TM }}$
Programmable Active Droop ${ }^{\text {TM }}$		PACMAN ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$

