

July 2013

FDZ4010

Integrated Load Switch

Features

- Input Voltage Range from 2 V to 5 V
- 10 mA output current
- Ultra Thin and Small Package WL-CSP 0.8 X 1.2 mm², Height 0.5 mm
- RoHS Compliant

General Description

The FDZ4010 is a 10 mA high side Pch MOSFET switch that can be controlled by two enable signals. It is an AND function switch activated by asserting both enable signals high. Input voltage range operates from 2 V to 5 V to align with the requirement of portable devices power requirement. FDZ4010 is uniquely designed for optimized low power dissipation and precise driver requirement. FDZ4010 comes in a tiny 0.8 mm X 1.2 mm WLCSP, 6 bumps, with 0.4 mm pitch.

Application

■ Smart Phone / Table Accessory

TOP View

BOTTOM View

6 Balls, 0.8 X 1.2 mm² WL-CSP

Package Marking and Ordering Information

Part Number	Device Marking	Ball Pitch	Package	Reel Size	Tape Width	Quantity
FDZ4010	Z5	0.4 mm	0.8 mm x 1.2 mm WL-CSP, 6 Bumps	7 "	8 mm	3000

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html

Application Diagram

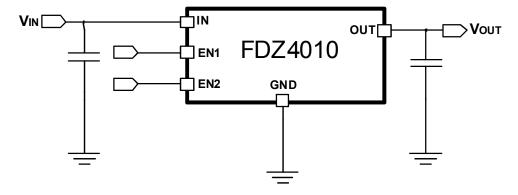


Figure 1. Typical Application

Block Diagram

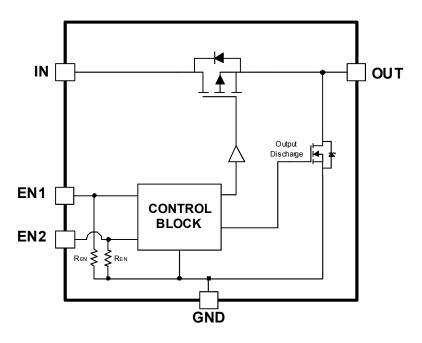


Figure 2. Functional Block Diagram

Truth Table

V _{IN} (2 V to 5 V)	EN1	EN2	PCH MOSFET Status	V _{OUT} Status
YES	HIGH	HIGH	ON	V _{IN}
YES	LOW	LOW	OFF	LOW
YES	HIGH	LOW	OFF	LOW
YES	LOW	HIGH	OFF	LOW

Table 1. Truth Table for OUT Status

Pin Configuration

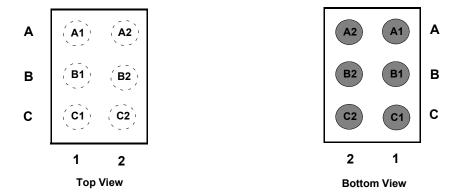
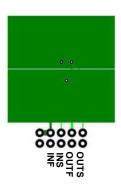


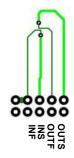
Figure 3. Pin Assignments

Pin Definitions

Pin#	Name	Description	
A1	IN	Input of the Pch MOSFET Switch	
A2	OUT	Output of the Pch MOSFET Switch. Internally, this pin is pulled down through an output discharge FET to Ground when EN pins are low and V _{IN} is present.	
B1, C1	GND	Ground	
B2	EN1	ON/OFF control input, Active High.	
C2	EN2	ON/OFF control input, Active High.	


Absolute Maximum Ratings

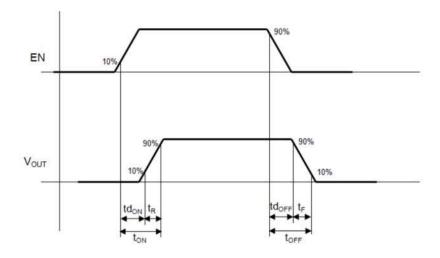
Characterist	Min.	Max.	Unit	
V _{IN} , V _{OUT} to GND		-0.3	6	V
V _{EN1} ,V _{EN2} to GND		-0.3	6	V
Continuous Output Current			20	mA
Junction Temperature (T _J)		150	°C	
Storage Temperature Range (T _{STG})	-65	150	°C	
Thermal Resistance, Junction to Ambient (θ_{JA})	(Note 1b)		312	°C/W
Flootrostatia Diagharga	Human Body Model, ANSI/ESDA/ JEDEC JS-001-2012	5		kV
Electrostatic Discharge	Charged Device Model, JESD22- C101	2		


Recommended Operating Conditions

Characteristics	Symbol	Min.	Max.	Unit
IN Voltage	V _{IN}	2	5	V
OUT Current, V _{IN} = 3.3 V , V _{EN1} = V _{EN2} = 3.3 V	Гоит		10	mA
EN1, EN2 Voltage	V _{EN1} , V _{EN2}		5	V
Operating Temperature Range		-40	85	°C

Notes: 1. $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting suface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

a. 115 °C/W when mounted on a 1 in² pad of 2 oz copper.



b. 312 °C/W when mounted on a minimum pad of 2 oz copper.

Electrical Characteristics V_{IN} = 2 V to 5 V, T_{J} = 25 $^{\text{o}}\text{C}$, unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
V _{IH}	Input High Voltage, EN1, EN2	V _{IN} = 2.5 V to 5 V and across temperature range	1.375			V
V _{IH}	Input High Voltage, EN1, EN2	V _{IN} = 2 V and across temperature range	1.525			V
V _{II} Input Low Voltage EN1 EN2		V _{IN} = 2 V to 5 V and across temperature range			0.95	V
R _{EN}	Pull Down Resistance at EN1, EN2	V _{EN1} = V _{EN2} = 1 V and across temperature range	70	100	130	kΩ
C _{EN}	Input Capacitance of EN1, EN2	f = 1 MHz and across temperature range (Note 2)			10	pF
R _{DS(ON)}	On-Resistance of Pch MOSFET	I _{OUT} = 10 mA, V _{IN} = 2 V to 5 V			1.5	Ω
IQ	Quiescent Current	V_{IN} = 5 V, V_{EN1} = V_{EN2} = 5 V, V_{OUT} floating (I_{OUT} = 0), Across temperature range			500	μА
		$V_{\rm IN}$ = 3.3 V, $V_{\rm EN1}$ = $V_{\rm EN2}$ = 0 V, $V_{\rm OUT}$ floating ($I_{\rm OUT}$ = 0), Across temperature range			1	μА
I _{SD}	Shutdown Current	V_{IN} = 3.3 V, V_{EN1} = 825 mV & V_{EN2} = 425 mV, V_{EN1} = 425 mV & V_{EN2} = 825 mV, V_{OUT} floating (I_{OUT} = 0), Across temperature range			10	μА
R _{OUT}	Pull Down Resistance at OUT Pin	V _{EN1} = V _{EN2} = 0 V		1	1.3	kΩ
t _{on}	Turn-On Time	Load Impedance,			1	μS
t _r	Turn-On Rise Time	$V_{IN} = 3.3 \text{ V},$			0.95	μS
t_{off}	Turn-Off Time	$C_L = 50 \text{ pF}, R_L = 500 \Omega,$ $-V_{EN1} = V_{EN2} = 0 \text{ V to } 2.3 \text{ V},$			2	μS
t _f	Turn-Off Fall Time	(500 ns rise time)			2	μS

Notes:2. Guaranteed by characterization and design

td_{ON} = Delay On Time t_R = V_{OUT} Rise Time ton = Turn-On Time td_{OFF}= Delay Off Time t_F = V_{OUT} Fall Time $t_{\text{OFF}} = \text{Turn-Off Time}$

Figure 4. Timing Diagram

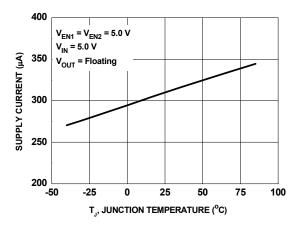


Figure 5. Quiescent Current vs Temperature

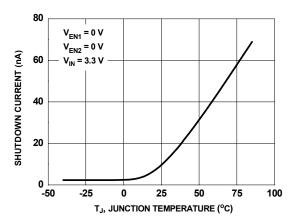


Figure 7. Shutdown Current vs Temperature

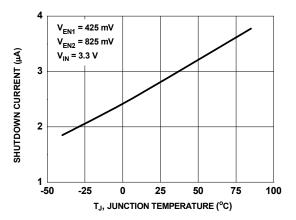


Figure 9. Shutdown Current vs Temperature

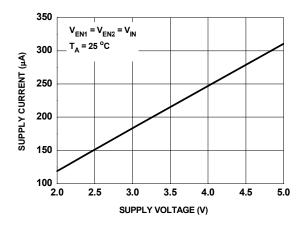


Figure 6. Quiescent Current vs Supply Voltage

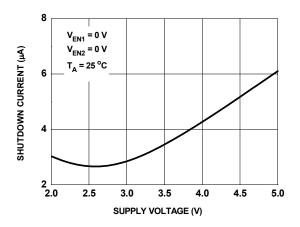


Figure 8. Shutdown Current vs Supply Voltage

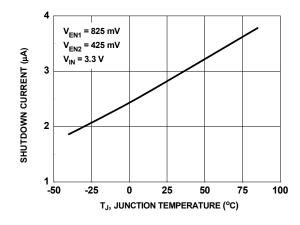


Figure 10. Shutdown Current vs Temperature

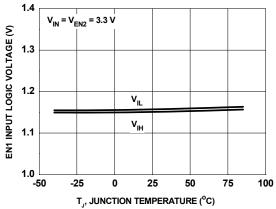


Figure 11. EN1 Logic Voltage vs Temperature

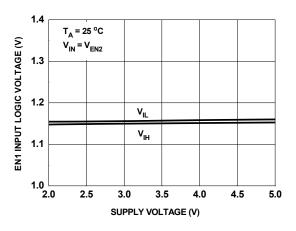


Figure 12. EN1 Logic Voltage vs Supply Voltage (V_{IN})

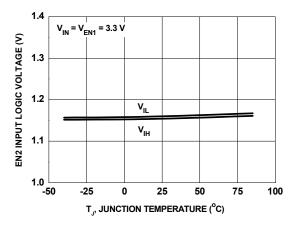


Figure 13. EN2 Logic Voltage vs Temperature

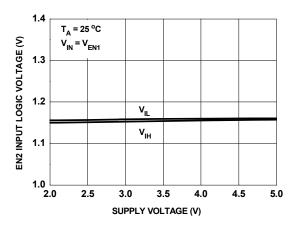


Figure 14. EN2 Logic Voltage vs Supply Voltage (VIN)

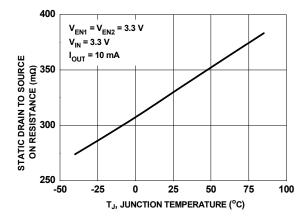


Figure 15. Static Drain to Source ON Resistance vs Temperature

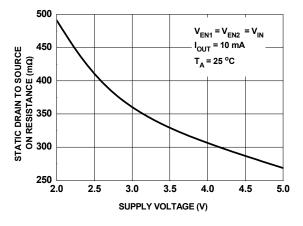


Figure 16. Static Drain to Source ON Resistance vs Supply Voltage

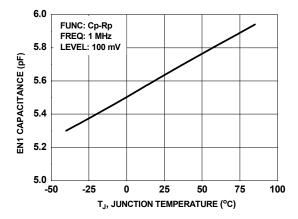


Figure 17. EN1 Capacitance vs Temperature

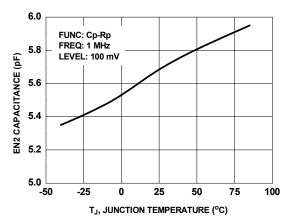


Figure 18. EN2 Capacitance vs Temperature

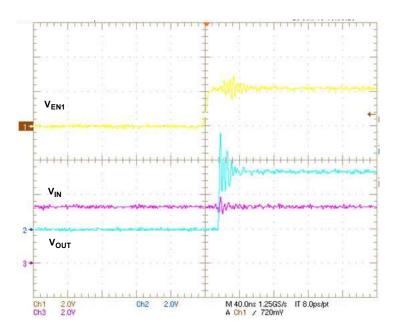


Figure 19. Turn-On Time (V_{IN} = 3.3 V, V_{EN2} = 2.3 V, V_{EN1}= 0 to 2.3 V, C_{OUT} = 50 pF, R_L= 500 Ω , timescale = 40 us/div)

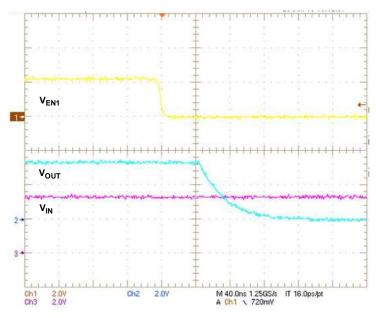


Figure 20. Turn-Off Time (V_{IN} = 3.3 V, V_{EN2} = 2.3 V, V_{EN1} = 2.3 to 0 V, C_{OUT} = 50 pF, R_L= 500 Ω , timescale = 40 us/div)

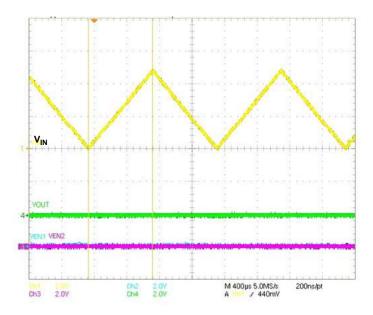


Figure 21. V_{IN} Ramp Up and Down (V_{IN} = 0 to 4.8 V (6100 V/sec), EN1 and EN2 are floating(Internally GND), C_{OUT} = 50 pF, R_{L} = 500 Ω , timescale = 400 us/div)

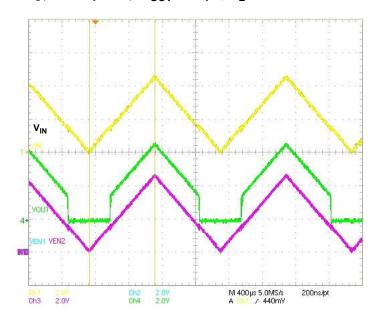


Figure 22. V_{IN} Ramp Up and Down (EN1 = EN2 = V_{IN} = 0 to 4.8 V (6100 V/sec), C_{OUT} = 50 pF, R_L = 500 Ω , timescale = 400 us/div)

Application Information

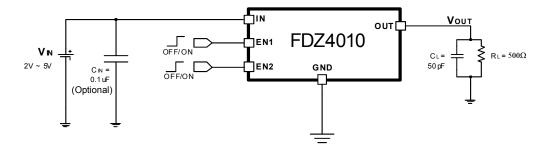


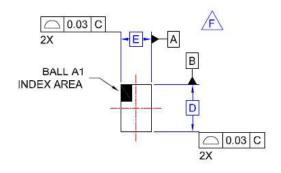
Figure 23. Typical Application Circuit

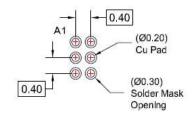
Input Voltage

Input Voltage (V_{IN}) is set from 2 V to 5 V.

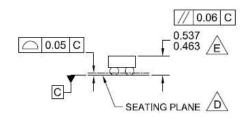
Input Capacitor

To prevent the input voltage being pulled below the minimum operating voltage, a reservoir capacitor can be connected from IN to GND. $0.1~\mu F$ ceramic type is suitable.

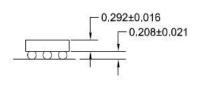

Enable/Shutdown Operation

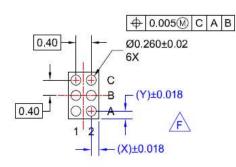

To turn on the switch, both the EN pins need to be asserted high. To ensure proper operation, Enable signals must be able to swing above and below the specified turn-on/off voltage threshold described in the Electrical Characteristics table under VIL and VIH for the selected input voltage.

Power up Sequence


Turn on input voltage (V_{IN}) within range from 2 V to 5 V then turn on EN1 or/and EN2 signal. V_{OUT} status changed by EN1 or/and EN2 signal input and defined the status in Table 1 Truth Table.

Dimensional Outline and Pad Layout




TOP VIEW

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

BOTTOM VIEW

NOTES:

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASMEY14,5M, 1994.

DATUM C, THE SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.

PACKAGE TYPICAL HEIGHT IS 463 MICRONS ±37 MICRONS (463-537 MICRONS).

FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.

Product-Specific Dimensions

Product	D	Е	X	Υ
FDZ4010	1.16 mm	0.76 mm	0.18 mm	0.18 mm

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ FPS™ AccuPower™ F-PFS™ AX-CAP® FRFET® Global Power ResourceSM BitSiC™

Build it Now™ Green Bridge™ CorePLUS™ Green FPS™

Green FPS™ e-Series™ CorePOWER™ $CROSSVOLT^{\text{TM}}$ Gmax™ GTO™

Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™

Dual Cool™ Marking Small Speakers Sound Louder EcoSPARK® and Better™

MegaBuck™ EfficentMax™ MICROCOUPLER™ ESBC™ MicroFET™

MicroPak™ Fairchild® MicroPak2™ MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ mWSaver™ FACT[®] FAST® OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® (1)_® PowerTrench® PowerXS™

Programmable Active Droop™

QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SyncFET™

SYSTEM ®*
GENERAL
TIPMESSATA TinvBoost¹ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™

Sync-Lock™

TRUECURRENT®* μSerDes™

UHC® Ultra FRFET™ UniFFT™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164