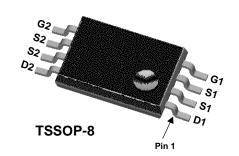
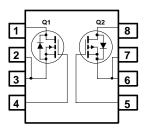
July 2008

FDW2521C

Complementary PowerTrench[®] MOSFET

General Description


This complementary MOSFET device is produced using Fairchild's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.


Applications

- DC/DC conversion
- Power management
- Load switch

Features

- Q2: P-Channel -3.8 A, 20 V. $R_{DS(ON)} = 43 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 70 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$
- High performance trench technology for extremely low R_{DS(ON)}
- Low profile TSSOP-8 package

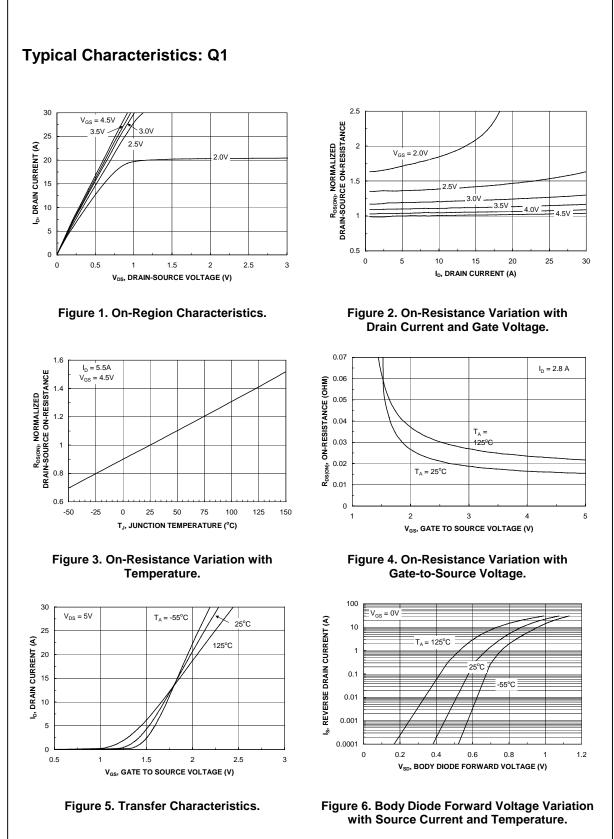
Absolute Maximum Ratings T_A = 25°C unless otherwise noted

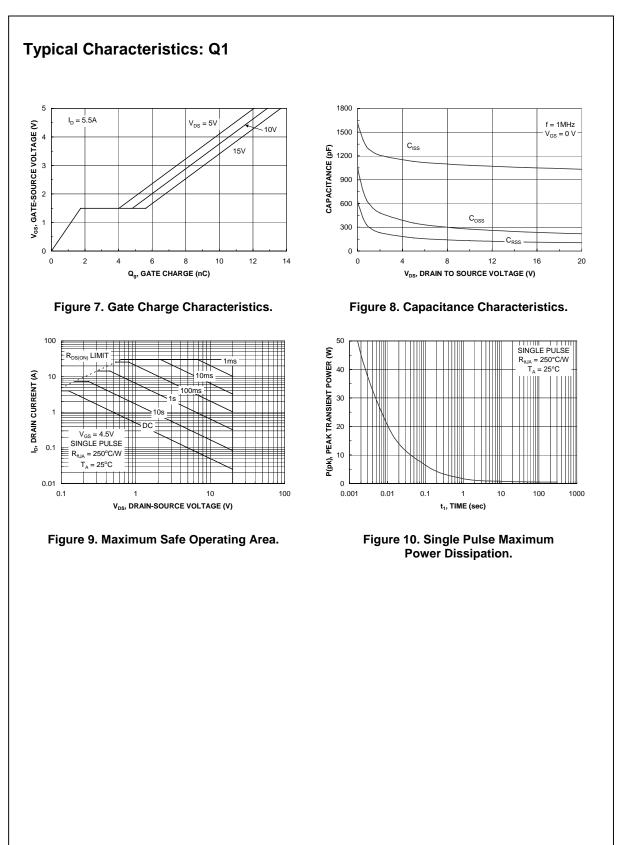
Symbol		Parameter		Q1	Q2	Units
V _{DSS}	Drain-Sourc	e Voltage		20	-20	V
V _{GSS}	Gate-Source	e Voltage		±12	±12	V
I _D	Drain Curre	nt - Continuous	(Note 1a)	5.5	-3.8	A
		- Pulsed		30	-30	
PD	Power Dissipation		(Note 1a)	1.0		W
			(Note 1b)	0.6		
T _J , T _{STG}	Operating a	Operating and Storage Junction Temperature Range		-55 to	+150	°C
	I Charac		ent (Note 1a)	12	25	°C/₩
		teristics sistance, Junction-to-Ambi	ent (Note 1a) (Note 1b)		25	°C/W
R _{θJA}	Thermal Re		(Note 1b)			°C/W
R _{eja} Packag	Thermal Re	sistance, Junction-to-Ambi	(Note 1b)		08	C/W

©2008 Fairchild Semiconductor Corporation

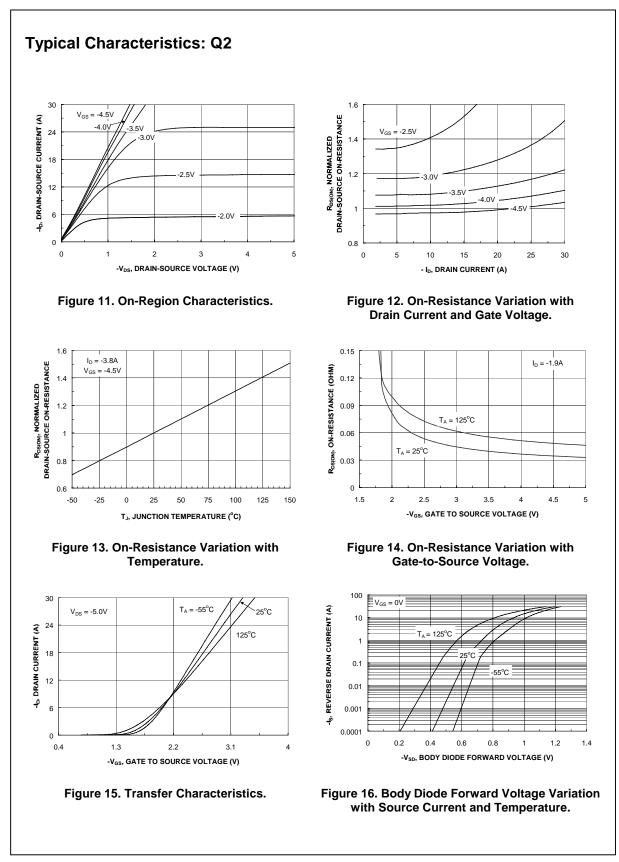
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Char	acteristics						
BV _{DSS}	Drain-Source Breakdown	V _{GS} = 0 V, I _D = 250 μA	Q1	20			V
	Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	Q2	-20			
	Breakdown Voltage	$I_D = 250 \ \mu$ A, Referenced to 25° C	Q1		14		mV/°0
ΔT_J	Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25° C	Q2		-16		<u> </u>
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	Q1 Q2			1 _1	μA
I _{GSS}	Gate-Body Leakage	$V_{\text{DS}} = -10$ V, $V_{\text{GS}} = 0$ V $V_{\text{GS}} = \pm 12$ V, $V_{\text{DS}} = 0$ V	Q2 Q1			+100	nA
IGSS	Cale-Dody Leakage	$V_{GS} = \pm 12$ V, $V_{DS} = 0$ V $V_{GS} = \pm 12$ V, $V_{DS} = 0$ V	Q2			<u>+</u> 100 +100	
On Char	acteristics (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	Q1	0.6	0.8	1.5	V
00(11)	6	$V_{DS} = V_{GS}, I_D = -250 \mu A$	Q2	-0.6	-1.0	-1.5	
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$	Q1		-3.2		mV/°0
ΔT_{J}	Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25° C	Q2		3.0		
	Static Drain-Source	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	Q1		17	21	mΩ
	On-Resistance	$V_{GS} = 2.5 \text{ V}, I_D = 4.2 \text{ A}$			24	35	
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$	00		23	34 43	-
		$V_{GS} = -4.5 \text{ V}, I_D = -3.8 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -3.0 \text{ A}$	Q2		36 56	43 70	
		$V_{GS} = -4.5 \text{ V}, \text{ I}_D = -3.8 \text{ A}, \text{ T}_J = 125^{\circ}\text{C}$			49	69	
D(on)	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$	Q1	30	-		Α
- ()		$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	Q2	-15			
GFS	Forward Transconductance	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	Q1		26		S
		$V_{DS} = -5 V, I_D = -3.5 A$	Q2		13.2		
	Characteristics					1	
Ciss	Input Capacitance	Q1: V _{DS} = 10 V, V _{GS} = 0 V,	Q1 Q2		1082 1030		pF
Coss	Output Capacitance	$v_{DS} = 10 v, v_{GS} = 0 v,$ f = 1.0 MHz	Q2 Q1		277		pF
Ooss	Ouipui Capacitance	Q2:	Q2		280		p
Crss	Reverse Transfer	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$	Q1		130		pF
- 100	Capacitance	f = 1.0 MHz	Q2		120		
Switching	g Characteristics						
d(on)	Turn-On Delay Time	Q1:	Q1		8	20	ns
		$V_{DD} = 10 V, I_D = 1 A,$	Q2		11	20	
tr	Turn-On Rise Time	$V_{GS} = 4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	Q1		8	27	ns
•	Turn-Off Delay Time	Q2: V _{DD} = -5 V, I _D = -1 A,	Q2 Q1		18 24	32 38	
t _{d(off)}	Turn-On Delay Time	$V_{\text{DD}} = -3$ V, $V_{\text{D}} = -1$ A, $V_{\text{GS}} = -4.5$ V, $R_{\text{GEN}} = 6 \Omega$	Q2		24 34	55	ns
t _f	Turn-Off Fall Time		Q1		8	16	ns
			Q2		34	55	
J ^a	Total Gate Charge	Q1:	Q1		12	17	nC
		$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}, \text{ V}_{GS} = 4.5 \text{ V}$	Q2		9.7	16	<u> </u>
\mathbf{Q}_{gs}	Gate-Source Charge	Q2:	Q1		2		nC
<u></u>	Cata Drain Charge	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -3.8 \text{ A}, \text{V}_{GS} = -4.5 \text{ V}$	Q2		2.2		
\mathbf{Q}_{gd}	Gate-Drain Charge	$v_{DS} = 0 v, v_D = -0.0 \Lambda, v_{GS} = -4.0 V$	Q1 Q2		3 2.4		nC
			942		2.4		

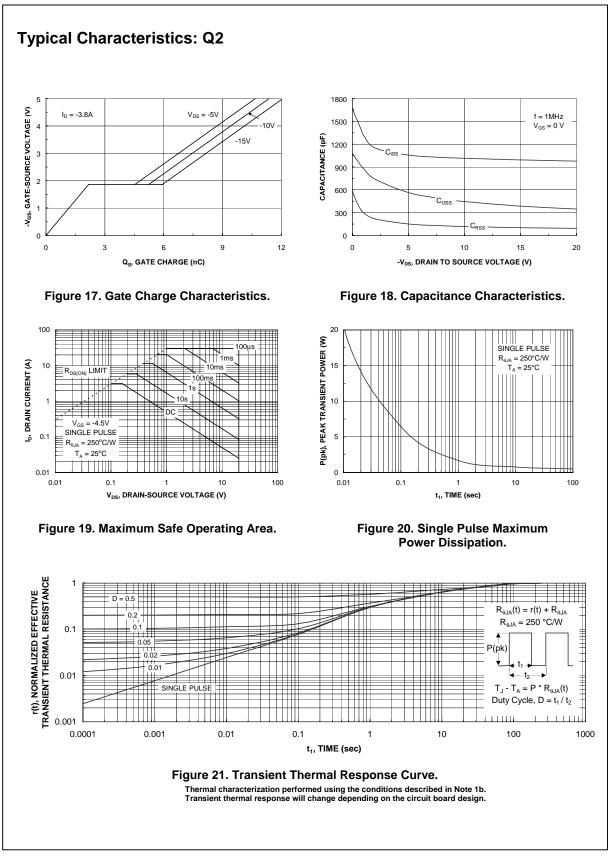
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
	una Dia da Okana stanist	las and Marinerus Dathers					
Drain-So	urce Diode Characterist	ics and Maximum Ratings					
1	urce Diode Characterist Maximum Continuous Drain-S	U	Q1			0.83	A
Drain-So Is		U	Q1 Q2			0.83 0.83	A
		U			0.7		A


Notes:


 R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) $\,R^{}_{_{\theta JA}}\,is\,125^\circ C/W$ (steady state) when mounted on a 1 inch² copper pad on FR-4.


b) $R_{\theta JA}$ is 208°C/W (steady state) when mounted on a minimum copper pad on FR-4.


2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDW2521C Rev D1(W)

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™	FPS™	PDP SPM™	The Power Franchise [®]
CorePLUS™	F-PFS™	Power-SPM™	the
CorePOWER™ CDCCC201001 TM	FRFET®	PowerTrench®	power franchise
<i>CROSSVOLT</i> ™ CTL™	Global Power Resource SM Green FPS™	Programmable Active Droop™ QFET [®]	TinyBoost™
Current Transfer Logic™	Green FPS™ e-Series™	QFET	TinyBuck™
EcoSPARK®	GTO™	Quiet Series™	TinyLogic®
EfficentMax™	IntelliMAX™	RapidConfigure™	TINYOPTO™ TinyPower™
EZSWITCH™ *	ISOPLANAR™	Saving our world, 1mW at a time™	TinyPWM™
EZ [™]	MegaBuck™	SmartMax™	TinyWire™
	MICROCOUPLER™	SMART START™ SPM [®]	
F [®]	MicroFET™ MicroPak™	SPM ⁺ STEALTH™	SerDes
Fairchild [®]	MillerDrive™	SuperFET™	UHC®
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series™	Motion-SPM™	SuperSOT™-6	UniFET™
FACT®	OPTOLOGIC®	SuperSOT™-8	VCX™
FAST [®] FastvCore™	OPTOPLANAR [®]	SuperMOS™	VisualMax™
FlashWriter [®] *		SyncFET™	

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EARCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- I. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	•	Rev