FAIRCHILD

SEMICONDUCTOR®

FDD8770/FDU8770 N-Channel PowerTrench[®] MOSFET 25V, 35A, 4.0m Ω

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$ and fast switching speed.

Features

- Max $r_{DS(on)}$ = 4.0m Ω at V_{GS} = 10V, I_D = 35A
- Max $r_{DS(on)}$ = 5.5m Ω at V_{GS} = 4.5V, I_D = 35A
- Low gate charge: Q_{g(10)} = 52nC(Typ), V_{GS} = 10V

GC

- Low gate resistance
- RoHS Compliant

Application

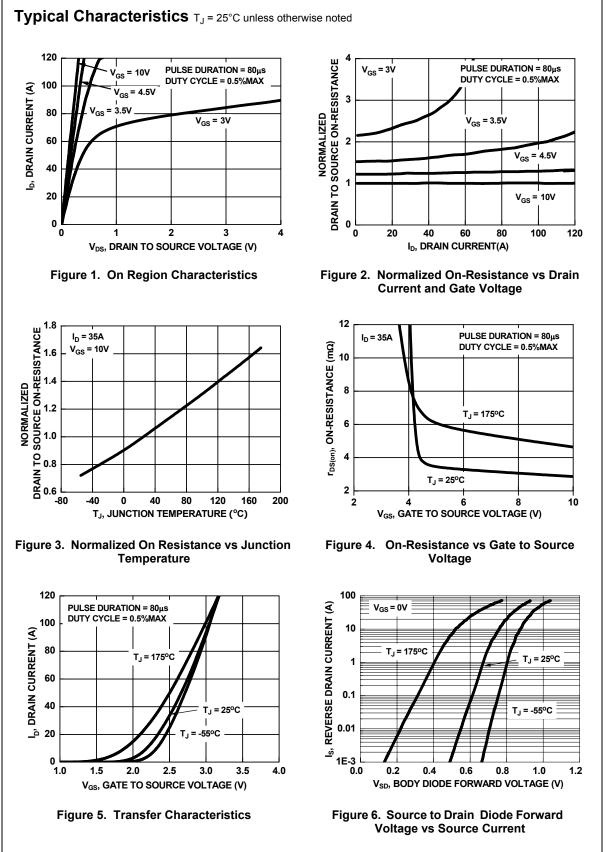
- Vcore DC-DC for Desktop Computers and Servers
- VRM for Intermediate Bus Architecture

S D-PAK G D S I-PAK S (TO-252) (TO-251AA) Short Lead I-PAK

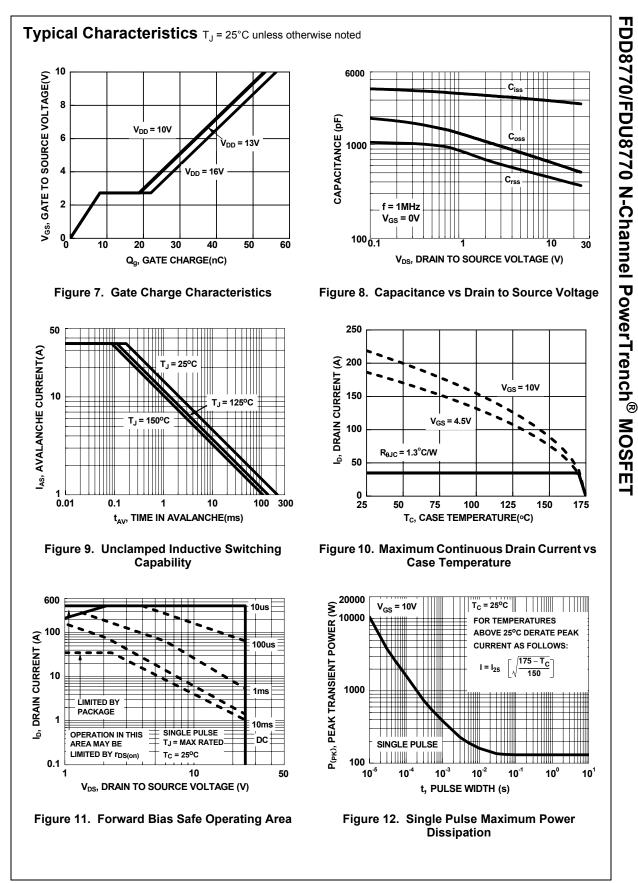
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		25	V
V _{GS}	Gate to Source Voltage		±20	V
	Drain Current -Continuous (Package Limited)		35	
I _D	-Continuous (Die Limited)		210	Α
	-Pulsed	(Note 1)	407	
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	113	mJ
P _D	Power Dissipation		115	W
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C
Therma	Characteristics			
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case TO-252, TO-251		1.3	°C/W
ſ				

000			
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient TO-252, TO-251	100	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient TO-252,1in ² copper pad area	52	°C/W

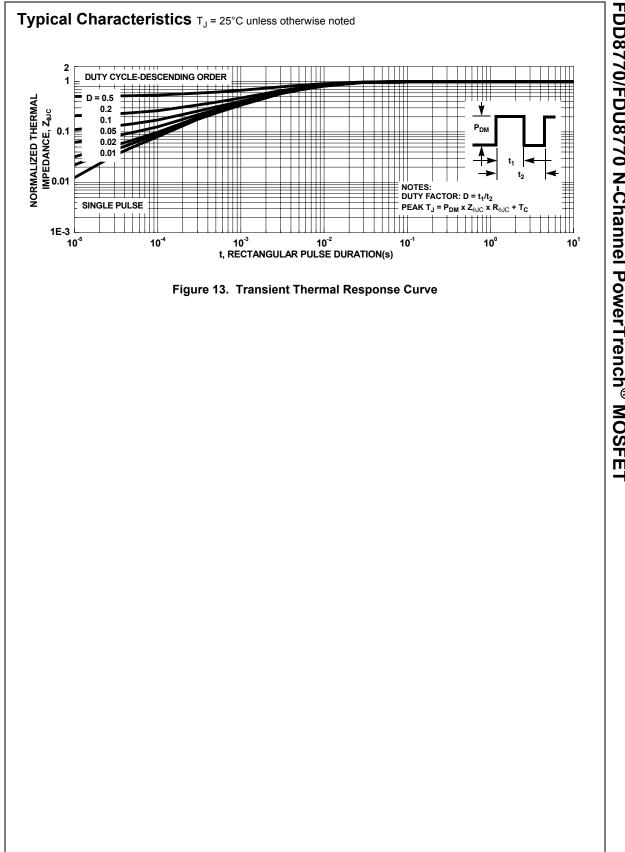

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8770	FDD8770	TO-252AA	13"	12mm	2500 units
FDU8770	FDU8770	TO-251AA	N/A(Tube)	N/A	75 units
FDU8770	FDU8770_F071	TO-251AA	N/A(Tube)	N/A	75 units


March 2006

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Chara	cteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V		25			V
ΔB _{VDSS}		$I_D = 250 \mu A$, referenced to			10.0		
ΔT_J	Coefficient	25°C			13.6		mV/°C
I _{DSS}		$V_{DS} = 20V,$ $V_{GS} = 0V$ $T_{J} = 150^{\circ}C$				1	μA
055	_					250	μι
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$				±100	nA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 µ	A	1.2	1.6	2.5	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage	$I_D = 250 \mu A$, referenced			5.0		mV/°C
ΔT_J	Temperature Coefficient	25°C			-5.9		mv/ C
r _{DS(on)}		V _{GS} = 10V, I _D = 35A			3.3	4.0	- mΩ
	Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 35A			4.0	5.5	
		V _{GS} = 10V, I _D = 35A			4.8	5.9	
		T _J = 175°C					
Dynamic	Characteristics						
C _{iss}	Input Capacitance	1/-12/(1/-0)/			2795	3720	pF
	Input Capacitance Output Capacitance	V _{DS} = 13V, V _{GS} = 0V, f = 1MHz			2795 685	3720 915	pF pF
C _{oss}		V _{DS} = 13V, V _{GS} = 0V, f = 1MHz	_				
C _{oss} C _{rss}	Output Capacitance		-		685	915	pF
C _{oss} C _{rss} R _g	Output Capacitance Reverse Transfer Capacitance Gate Resistance	f = 1MHz			685 450	915	pF pF
C _{oss} C _{rss} R _g Switching	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics	f = 1MHz	-		685 450	915	pF pF
C _{oss} C _{rss} Rg Switching	Output Capacitance Reverse Transfer Capacitance Gate Resistance	f = 1MHz f = 1MHz V _{DD} = 13V, I _D = 35A	-		685 450 1.5	915 675	pF pF Ω
C_{oss} C_{rss} R_g Switching $t_{d(on)}$ t_r	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time	f = 1MHz f = 1MHz	-		685 450 1.5 10	915 675 20	pF pF Ω ns
C_{oss} C_{rss} R_g Switching $t_{d(on)}$ t_r $t_{d(off)}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	f = 1MHz f = 1MHz V _{DD} = 13V, I _D = 35A			685 450 1.5 10 12	915 675 20 22	pF pF Ω ns ns
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	f = 1MHz f = 1MHz V_{DD} = 13V, I _D = 35A V_{GS} = 10V, R _{GS} = 5 Ω V_{GS} = 0V to 10V			685 450 1.5 10 12 49	915 675 20 22 78	pF pF Ω ns ns ns
C _{oss} C _{rss} Rg Switching t _{d(on)} t _r t _{d(off)} t _f Qg	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 13V, I_D = 35A$ $V_{GS} = 10V, R_{GS} = 5\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{CS} = 0V \text{ to } 5V$ V_{DD}	= 13V		685 450 1.5 10 12 49 25	915 675 20 22 78 40	pF pF Ω ns ns ns
t _{d(on)}	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	f = 1MHz f = 1MHz $V_{DD} = 13V, I_D = 35A$ $V_{GS} = 10V, R_{GS} = 5\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$ V_{DD}	35A -		685 450 1.5 10 12 49 25 52	915 675 20 22 78 40 73	pF pF Ω ns ns ns ns nc
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_d(off) \\ \hline t_f \\ \hline \textbf{Q}_g \\ \hline \textbf{Q}_{gs} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	f = 1MHz f = 1MHz $V_{DD} = 13V, I_D = 35A$ $V_{GS} = 10V, R_{GS} = 5\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$ V_{DD}			685 450 1.5 10 12 49 25 52 29	915 675 20 22 78 40 73	pF pF Ω ns ns ns nc nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_d(off) \\ \hline t_f \\ \hline Q_g \\ \hline Q_g \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller"Charge	f = 1MHz f = 1MHz $V_{DD} = 13V, I_D = 35A$ $V_{GS} = 10V, R_{GS} = 5\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$ V_{DD}	35A -		685 450 1.5 10 12 49 25 52 29 8.1	915 675 20 22 78 40 73	pF pF Ω ns ns ns nC nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_d(off) \\ \hline t_f \\ \hline Q_g \\ \hline Q_g \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 13V, I_{D} = 35A$ $V_{GS} = 10V, R_{GS} = 5\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$ $I_{D} = 3$ $I_{g} = 7$	35A -		685 450 1.5 10 12 49 25 52 29 8.1 11	915 675 20 22 78 40 73 41	pF pF Ω ns ns ns nC nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline \textbf{t}_r \\ \hline \textbf{t}_{d(off)} \\ \hline \textbf{t}_r \\ \hline \textbf{Q}_g \\ \hline \textbf{Q}_g \\ \hline \textbf{Q}_{gs} \\ \hline \textbf{Q}_{gd} \\ \hline \textbf{Drain-Sou} \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller"Charge	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 13V, I_D = 35A$ $V_{GS} = 10V, R_{GS} = 5\Omega$ $V_{GS} = 0V \text{ to } 10V$ V_{DD} $I_D = 35A$ $V_{GS} = 0V, I_S = 35A$	35A -		685 450 1.5 10 12 49 25 52 29 8.1 11 0.84	915 675 20 22 78 40 73 41 1.25	pF pF Ω ns ns ns nC nC nC
$\frac{C_{oss}}{C_{rss}}$ R_{g} Switching $\frac{t_{d(on)}}{t_{r}}$ $\frac{t_{d(off)}}{t_{f}}$ Q_{g} Q_{g} Q_{gs} Q_{gd} Drain-Sou	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller"Charge urce Diode Characteristics Source to Drain Diode Forward Voltage	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 13V, I_D = 35A$ $V_{GS} = 10V, R_{GS} = 5\Omega$ $V_{GS} = 0V \text{ to } 10V$ V_{DD} $I_D = 3$ $I_g = 2$ $V_{GS} = 0V, I_S = 35A$ $V_{GS} = 0V, I_S = 15A$	35A - 1.0mA _		685 450 1.5 10 12 49 25 52 29 8.1 11 11 0.84 0.79	915 675 20 22 78 40 73 41 1.25 1.0	pF pF Ω ns ns ns nC nC nC nC V
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_d(off) \\ \hline t_f \\ \hline \textbf{Q}_g \\ \hline \textbf{Q}_g \\ \hline \textbf{Q}_{gs} \\ \hline \textbf{Q}_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller"Charge urce Diode Characteristics	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 13V, I_D = 35A$ $V_{GS} = 10V, R_{GS} = 5\Omega$ $V_{GS} = 0V \text{ to } 10V$ V_{DD} $I_D = 35A$ $V_{GS} = 0V, I_S = 35A$	35A - 1.0mA _ /μs		685 450 1.5 10 12 49 25 52 29 8.1 11 0.84	915 675 20 22 78 40 73 41 1.25	pF pF Ω ns ns ns nC nC nC

FDD8770/FDU8770 N-Channel PowerTrench[®] MOSFET



www.fairchildsemi.com

FDD8770/FDU8770 Rev. A

www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST® ActiveArray™ FASTr™ Bottomless™ FPS™ Build it Now™ FRFET™ CoolFET™ GlobalOptoisolator™ GTO™ CROSSVOLT™ DOME™ HiSeC™ EcoSPARK™ I²C™ E²CMOS™ i-Lo™ EnSigna™ ImpliedDisconnect[™] FACT™ IntelliMAX™ FACT Quiet Series™ Across the board. Around the world.™ The Power Franchise[®] Programmable Active Droop[™]

ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCX™ OCXPro™ OCX™ OCXPro™ OPTOLOGIC[®] OPTOPLANAR™ PACMAN™ POP™ Power247™

PowerEdgeTM PowerSaverTM PowerTrench[®] QFET[®] QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM µSerDesTM ScalarPumpTM SILENT SWITCHER[®] SMART STARTTM SPMTM StealthTM SuperFETTM SuperSOT^{TM-3} SuperSOT^{TM-6} SuperSOT^{TM-8} SyncFETTM TCMTM TinyLogic[®] TINYOPTOTM TruTranslationTM UHCTM UhIFETTM UltraFET[®] VCXTM WireTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS Definition of Terms