June 2004

FDD6296/FDU6296

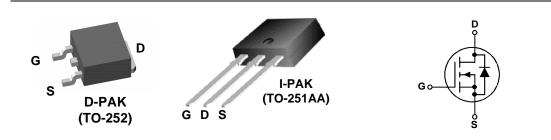
FAIRCHILD

SEMICONDUCTOR®

# FDD6296/FDU6296

# 30V N-Channel Fast Switching PowerTrench<sup>o</sup> MOSFET

# **General Description**


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low  $R_{DS(ON)}$  and fast switching speed.

# Applications

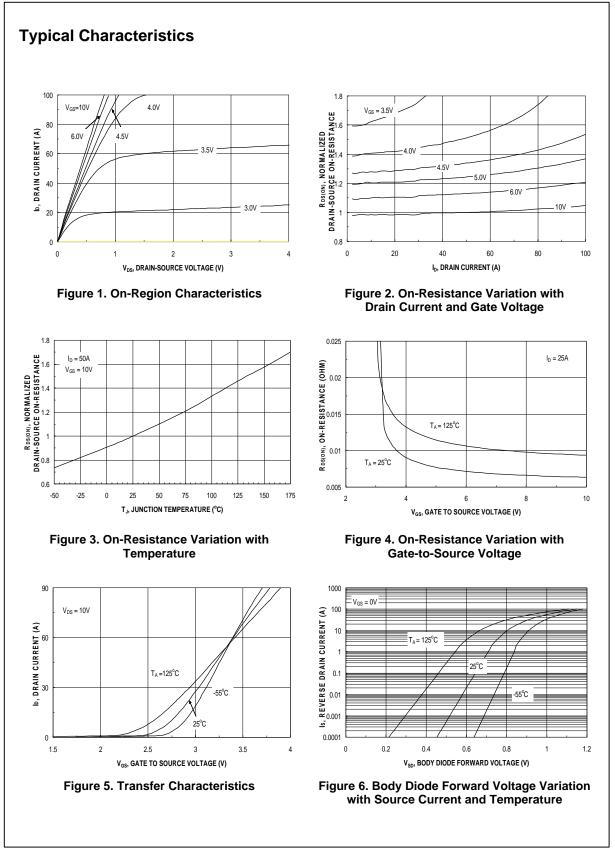
- DC/DC converter
- Power management

## Features

- 50A, 30 V  $R_{DS(ON)} = 8.8 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$  $R_{DS(ON)} = 11.3 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Low gate charge
- Fast switching
- High performance trench technology for extremely low  $R_{\text{DS}(\text{ON})}$

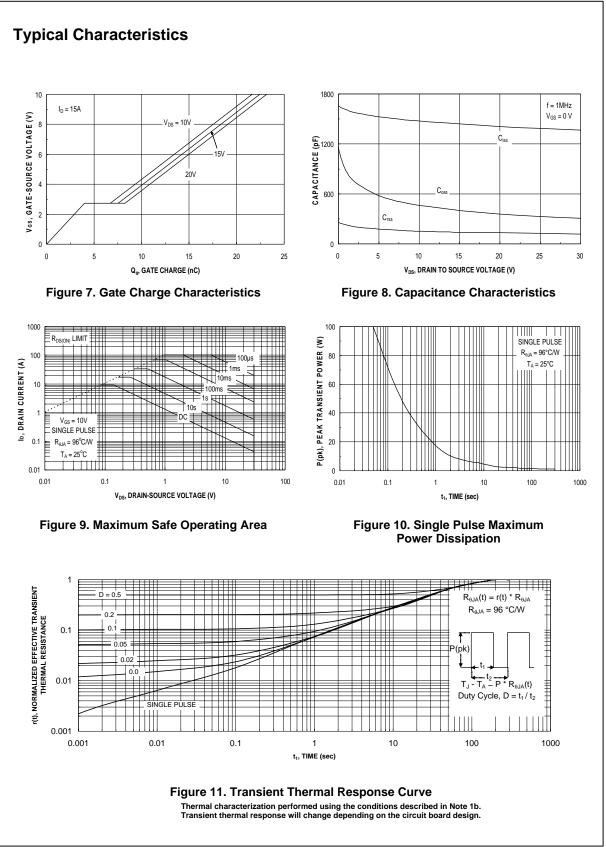


## Absolute Maximum Ratings TA=25°C unless otherwise noted


| Symbol                            | Parameter                                               |                                                  |                     |                | Ratings     |           | Un         | its     |     |
|-----------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------------|----------------|-------------|-----------|------------|---------|-----|
| V <sub>DSS</sub>                  | Drain-Source                                            | n-Source Voltage                                 |                     |                | 30          |           | \          | /       |     |
| V <sub>GSS</sub>                  | Gate-Source Voltage                                     |                                                  |                     |                | ± 20        |           |            |         |     |
| I <sub>D</sub>                    | Continuous Drain Current @T <sub>C</sub> =25°C (Note 3) |                                                  |                     | (Note 3)       | 50          |           |            | ٩       |     |
|                                   |                                                         |                                                  | @T <sub>A</sub> =25 | 5°C            | (Note 1a)   |           | 15         |         |     |
|                                   | Р                                                       |                                                  |                     |                | (Note 1a)   |           | 100        |         |     |
| PD                                | 1                                                       |                                                  | @T <sub>c</sub> =25 | 5°C            | (Note 3)    |           | 52         | W       |     |
|                                   |                                                         |                                                  | @T <sub>A</sub> =25 | 5°C            | (Note 1a)   |           | 3.8        |         |     |
|                                   |                                                         |                                                  | @T <sub>A</sub> =25 | 5°C            | (Note 1b)   |           | 1.6        |         |     |
| T <sub>J</sub> , T <sub>STG</sub> | Operating a                                             | Operating and Storage Junction Temperature Range |                     |                | -55 to +175 |           | °(         | С       |     |
| Therma                            | l Charac                                                | teristics                                        |                     |                |             |           |            |         |     |
| R <sub>eJC</sub>                  | Thermal Resistance, Junction-to-Case (Note 1)           |                                                  |                     | 2.9            |             |           | /W         |         |     |
| R <sub>0JA</sub>                  | Thermal Resistance, Junction-to-Ambient (Note 1a)       |                                                  |                     | (Note 1a)      | 40          |           |            |         |     |
|                                   | Thermal Resistance, Junction-to-Ambient (Note 1         |                                                  |                     | (Note 1b)      | 96          |           |            |         |     |
| Packag                            | e Markin                                                | g and Oro                                        | dering              | Infor          | rmatior     | <u>ו</u>  |            |         |     |
| Device I                          |                                                         | Device                                           |                     |                | kage        | Reel Size | Tape width | Quanti  | ty  |
| FDD                               | 6296                                                    | FDD629                                           | 6                   | D-PAK (TO-252) |             | 13"       | 12mm       | 2500 un | its |
| FDU6296 FDU2696 I-PAK (*          |                                                         | FDU269                                           | 6                   | I-PAK (        | TO-251)     | Tube      | N/A        | 75      |     |

©2004 Fairchild Semiconductor Corporation

| Symbol                                 | Parameter                                         | Test Conditions                                                                                                                                               | Min | Тур               | Max                 | Units |
|----------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|---------------------|-------|
| Drain-So                               | urce Avalanche Ratings (Note                      | e 2)                                                                                                                                                          |     | 1                 | 1                   |       |
| E <sub>AS</sub>                        | Drain-Source Avalanche Energy                     | Single Pulse, $V_{DD} = 15 \text{ V}$ , $I_D = 15 \text{ A}$                                                                                                  |     |                   | 165                 | mJ    |
| I <sub>AS</sub>                        | Drain-Source Avalanche Current                    |                                                                                                                                                               |     |                   | 15                  | Α     |
| Off Chara                              | acteristics                                       |                                                                                                                                                               | •   |                   |                     |       |
| BV <sub>DSS</sub>                      | Drain–Source Breakdown<br>Voltage                 | $V_{GS} = 0 V$ , $I_D = 250 \mu A$                                                                                                                            | 30  |                   |                     | V     |
| <u>ΔBVdss</u><br>ΔTj                   | Breakdown Voltage Temperature<br>Coefficient      | $I_D$ = 250 µA, Referenced to 25°C                                                                                                                            |     | 29                |                     | mV/°C |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current                   | $V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$                                                                                            |     |                   | 1                   | μΑ    |
| I <sub>GSS</sub>                       | Gate-Body Leakage                                 | $V_{GS} = \pm 20 \text{ V},  V_{DS} = 0 \text{ V}$                                                                                                            |     |                   | ±<br>100            | nA    |
| On Chara                               | acteristics (Note 2)                              |                                                                                                                                                               |     |                   |                     |       |
| V <sub>GS(th)</sub>                    | Gate Threshold Voltage                            | $V_{DS} = V_{GS}, \qquad I_D = 250 \ \mu A$                                                                                                                   | 1   | 1.7               | 3                   | V     |
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate Threshold Voltage<br>Temperature Coefficient | $I_D$ = 250 µA, Referenced to 25°C                                                                                                                            |     | -0.5              |                     | mV/°C |
| R <sub>DS(on)</sub>                    | Static Drain–Source<br>On–Resistance              | $ \begin{array}{ll} V_{GS} = 10 \ V, & I_D = 15 \ A \\ V_{GS} = 4.5 \ V, & I_D = 13 \ A \\ V_{GS} = 10 \ V, & I_D = 15 \ A, \ T_J = 125^\circ C \end{array} $ |     | 7.5<br>9.0<br>9.3 | 8.8<br>11.3<br>15.0 | mΩ    |
| <b>g</b> fs                            | Forward Transconductance                          | $V_{\text{DS}} = 5 \text{ V}, \qquad I_{\text{D}} = 15 \text{ A}$                                                                                             |     | 58                |                     | S     |
| Dynamic                                | Characteristics                                   |                                                                                                                                                               |     |                   |                     |       |
| Ciss                                   | Input Capacitance                                 | $V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$                                                                                                         |     | 1440              |                     | pF    |
| C <sub>oss</sub>                       | Output Capacitance                                | f = 1.0 MHz                                                                                                                                                   |     | 400               |                     | pF    |
| C <sub>rss</sub>                       | Reverse Transfer Capacitance                      |                                                                                                                                                               |     | 140               |                     | pF    |
| R <sub>G</sub>                         | Gate Resistance                                   | $V_{GS} = 15 \text{ mV},  f = 1.0 \text{ MHz}$                                                                                                                |     | 1.3               |                     | Ω     |
| Switching                              | Characteristics (Note 2)                          |                                                                                                                                                               |     |                   |                     |       |
| t <sub>d(on)</sub>                     | Turn-On Delay Time                                | $V_{\text{DD}} = 15 \text{ V}, \qquad I_{\text{D}} = 1 \text{ A},$                                                                                            |     | 11                | 19                  | ns    |
| t <sub>r</sub>                         | Turn–On Rise Time                                 | $V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$                                                                                                            |     | 6                 | 11                  | ns    |
| t <sub>d(off)</sub>                    | Turn-Off Delay Time                               |                                                                                                                                                               |     | 29                | 46                  | ns    |
| t <sub>f</sub>                         | Turn–Off Fall Time                                |                                                                                                                                                               |     | 13                | 23                  | ns    |
| Qg                                     | Total Gate Charge                                 | $V_{DS} = 15V, I_D = 15 \text{ A}, V_{GS} = 10 \text{ V}$                                                                                                     |     | 22.5              | 31.5                | nC    |
| Qg                                     | Total Gate Charge                                 | $V_{DS} = 15V,$ $I_{D} = 15 A,$                                                                                                                               |     | 12.2              | 17                  | nC    |
| Q <sub>gs</sub>                        | Gate-Source Charge                                | $V_{GS} = 5 V$                                                                                                                                                |     | 4                 |                     | nC    |
| Q <sub>gd</sub>                        | Gate–Drain Charge                                 |                                                                                                                                                               |     | 3.5               |                     | nC    |
| Drain-So                               | ource Diode Characteristics                       | and Maximum Ratings                                                                                                                                           |     |                   |                     |       |
| ls                                     | Maximum Continuous Drain-Source                   | ce Diode Forward Current                                                                                                                                      |     |                   | 3.2                 | А     |
| V <sub>SD</sub>                        | Drain–Source Diode Forward<br>Voltage             | $V_{GS}=0~V,~~I_S=3.2~A~~(\text{Note 2})$                                                                                                                     |     | 0.74              | 1.2                 | V     |
| t <sub>rr</sub>                        | Diode Reverse Recovery Time                       | I <sub>F</sub> = 15 A,                                                                                                                                        |     | 25                |                     | nS    |
| Q <sub>rr</sub>                        | Diode Reverse Recovery Charge                     | $d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$                                                                                                                      |     | 13                |                     | nC    |


FDD6296/FDU6296 Rev. C(W)

| Electrical Characteristics (cont'd)                                                                                  |                                                                                                                                                                                    |                       |  |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| Notes:<br>1. R <sub>0JA</sub> is the sum of the junction-to-cas<br>the drain pins. R <sub>0JC</sub> is guaranteed by | se and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mo<br>y design while $R_{\theta CA}$ is determined by the user's board design. | n mounted             |  |  |
|                                                                                                                      | a) R <sub>0JA</sub> = 40°C/W when mounted on<br>a 1in <sup>2</sup> pad of 2 oz copper b R <sub>0JA</sub> = 96°C/W when<br>on a minimum pad.                                        | n mounted             |  |  |
| <b>2.</b> Pulse Test: Pulse Width < 300μs, Du                                                                        | Scale 1 : 1 on letter size paper                                                                                                                                                   |                       |  |  |
| <ol> <li>Maximum current is calculated as:<br/>current limitation is 21A</li> </ol>                                  | $\sqrt{\frac{P_{D}}{R_{DS(ON)}}}$ where P <sub>D</sub> is maximum power dissipation at T <sub>C</sub> = 25°C and R <sub>DS(on)</sub> is at T <sub>J(max)</sub> and V <sub>GS</sub> | = 10V. Package        |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    |                       |  |  |
|                                                                                                                      |                                                                                                                                                                                    | 296/FDU6296 Rev. C(W) |  |  |



FDD6296/FDU6296

FDD6296/FDU6296 Rev. C(W)



FDD6296/FDU6296

FDD6296/FDU6296 Rev. C(W)

#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

|                                      | FAST®                          |                        | Power247™                       | SuperFET™              |
|--------------------------------------|--------------------------------|------------------------|---------------------------------|------------------------|
| ActiveArray™                         | FASTr™                         | LittleFET™             | PowerSaver™                     | SuperSOT™-3            |
| Bottomless™                          | FPS™                           | MICROCOUPLER™          | PowerTrench <sup>®</sup>        | SuperSOT™-6            |
| CoolFET™                             | FRFET™                         | MicroFET™              | QFET <sup>®</sup>               | SuperSOT™-8            |
| CROSSVOLT™                           | GlobalOptoisolator™            | MicroPak™              | QS™                             | SyncFET™               |
| DOME™                                | GTO™                           | MICROWIRE™             | QT Optoelectronics <sup>™</sup> | TinyLogic <sup>®</sup> |
| EcoSPARK™                            | HiSeC™                         | MSX™                   | Quiet Series <sup>™</sup>       | TINYOPTO™              |
| E <sup>2</sup> CMOS™                 | l²C™                           | MSXPro™                | RapidConfigure™                 | TruTranslation™        |
| EnSigna™                             | <i>i-Lo</i> ™                  | OCX™                   | RapidConnect™                   | UHC™                   |
| FACT™                                | ImpliedDisconnect <sup>™</sup> | OCXPro™                | µSerDes™                        | UltraFET <sup>®</sup>  |
| FACT Quiet Series <sup>™</sup>       |                                | OPTOLOGIC <sup>®</sup> | SILENT SWITCHER®                | VCX™                   |
| Across the board. Around the world.™ |                                | OPTOPLANAR™            | SMART START™                    |                        |
| The Power Franchise <sup>®</sup>     |                                | PACMAN™                | SPM™                            |                        |
| Programmable Active Droop™           |                                | POP™                   | Stealth™                        |                        |
| i iogiainnabio/                      |                                |                        |                                 |                        |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **PRODUCT STATUS DEFINITIONS**

#### **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or<br>In Design | This datasheet contains the design specifications for<br>product development. Specifications may change in<br>any manner without notice.                                                                                          |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |
|                          |                           | Rev. I11                                                                                                                                                                                                                          |