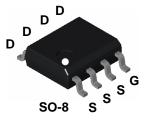
January 2002

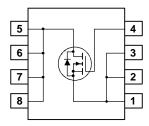
FDS7760A N-Channel Logic Level PowerTrench[®] MOSFET

General Description


SEMICONDUCTOR IM

This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.


Applications

- DC/DC converter
- Load switch
- Motor drives

Features

- 15 A, 30 V. $R_{DS(ON)} = 5.5 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 8 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}.$
- Low gate charge (37nC typical)
- Fast switching speed.
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$.
- High power and current handling capability.

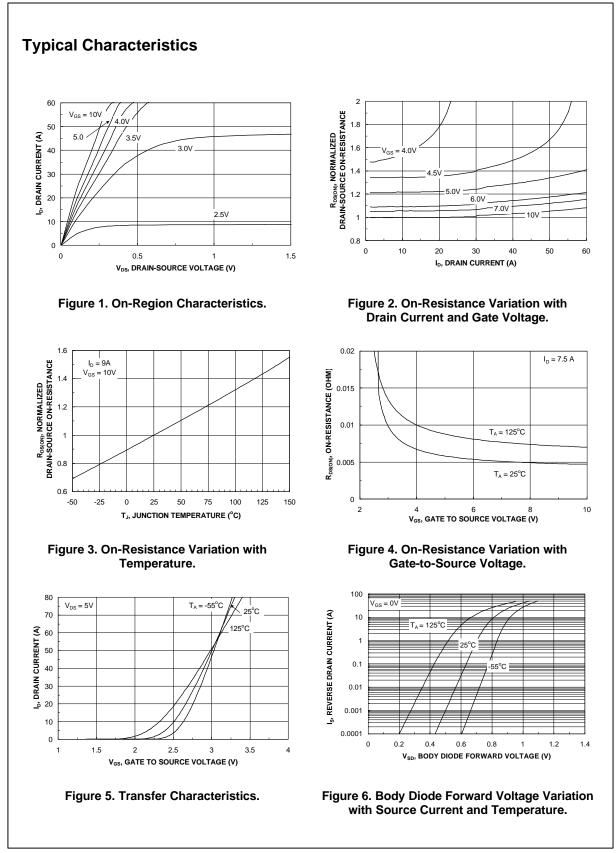
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Sour	ce Voltage		30	V	
V _{GSS}	Gate-Source	e Voltage	±20	V		
ID	Drain Current – Continuous		(Note 1a)	15	A	
		– Pulsed		60		
P _D	Power Diss	ipation for Single Operat	tion (Note 1a)	2.5	W	
			(Note 1b)	1.2		
			(Note 1c)	1		
T_J, T_{STG}	Operating a	and Storage Junction Ter	mperature Range	-55 to +150	°C	
Therma	I Charac	teristics				
$R_{\theta JA}$	Thermal Re	esistance, Junction-to-An	nbient (Note 1a)	50 °C/		
$R_{\theta JA}$	Thermal Re	Thermal Resistance, Junction-to-Ambient		50 (10 sec)	°C/W	
$R_{\theta JC}$	Thermal Re	Thermal Resistance, Junction-to-Case		30	°C/W	
Packag	e Outline	es and Ordering	Information			
Device Marking		Device	Reel Size	Tape Width	Quantity	
FDS7760A		FDS7760A	13"	12mm	2500 units	

©2002 Fairchild Semiconductor Corporation

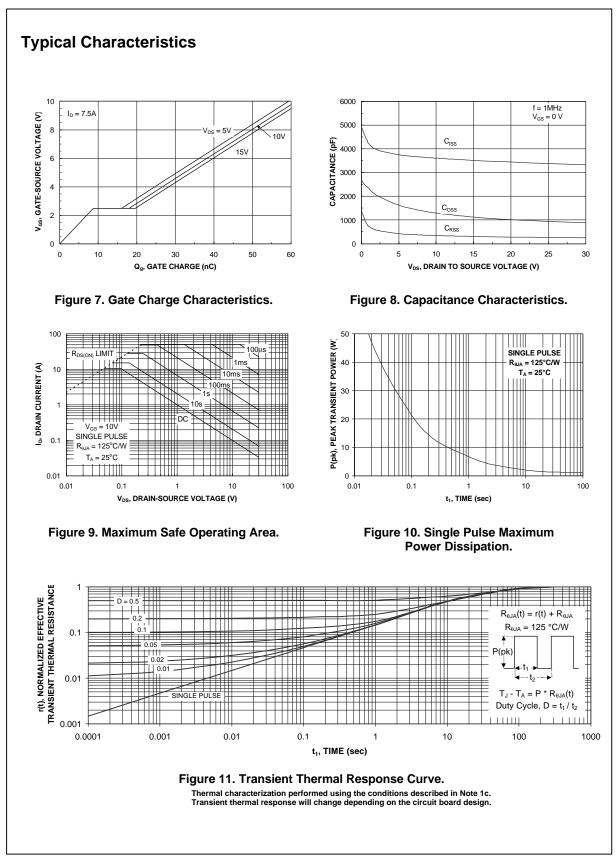
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	burce Avalanche Ratings (Note	2)				
W _{DSS}	Single Pulse Drain-Source	$V_{DD} = 15 \text{ V}, \qquad I_D = 15 \text{ A}$			360	mJ
I _{AR}	Avalanche Energy Maximum Drain-Source Avalanche				15	A
	Current					
	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS}=0~V,~I_{D}=250~\mu A$	30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		24		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -20 V V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	1	1.6	3	V
ΔV _{GS(th)} ΔT _J	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-5		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 15 \text{ A}$		4.5	5.5	mΩ
- (- /	On–Resistance	$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}, T_J = 125^{\circ}\text{C}$		7	8	
D()	On–State Drain Current	$V_{GS} = 4.5 \text{ V}, I_D = 13 \text{ A}$ $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	50	6	8	A
D(on) G FS	Forward Transconductance	$V_{DS} = 10 V$, $V_{DS} = 3 V$ $V_{DS} = 10 V$, $I_D = 15 A$	50	65		S
-				00		0
	Characteristics		1	0514	1	
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		3514		pF
	Output Capacitance			1123		pF
C _{rss}	Reverse Transfer Capacitance			307		pF
Switchin	g Characteristics (Note 2)					
d(on)	Turn–On Delay Time	$V_{DD} = 15 V, I_D = 1 A,$		13	20	ns
r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		12	19	ns
d(off)	Turn–Off Delay Time	-		78	125	ns
f	Turn–Off Fall Time			32	51	ns
Qg	Total Gate Charge	$V_{DS} = 15 V$, $I_D = 15 A$,		37	55	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		10		nC
⊋ _{gd}	Gate-Drain Charge			12		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
S	Maximum Continuous Drain-Source				2.1	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 2.1 A$ (Note 2)		0.7	1.2	V

a) 50°/W when mounted on a 1in² pad of 2 oz copper


Q Q Q Q Q~~~~

b) 105°/W when mounted on a .04 in² pad of 2 oz copper

c) 125°/W when mounted on a minimum pad.


2. Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDS7760A Rev D (W)

FDS7760A

FDS7760A Rev D (W)

FDS7760A

FDS7760A Rev D (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			
	In Design First Production Full Production			