
FAIRCHILD April 1998 SEMICONDUCTOR TM **FDS6680** Single N-Channel Logic Level PWM Optimized PowerTrench[™] MOSFET **General Description** Features This N-Channel Logic Level MOSFET has been designed $\begin{array}{c|c} \bullet & 11.5 \text{ A, } 30 \text{ V. } \text{R}_{\text{DS(ON)}} = 0.010 \ \Omega & @ \text{ V}_{\text{GS}} = 10 \text{ V} \\ \text{R}_{\text{DS(ON)}} = 0.015 \ \Omega & @ \text{ V}_{\text{GS}} = 4.5 \text{ V.} \end{array}$ specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional Optimized for use in switching DC/DC converters with switching PWM controllers. PWM controllers. The MOSFET features faster switching and lower gate charge than other MOSFETs with comparable R_{DS(ON)} Very fast switching. specifications. The result is a MOSFET that is easy and safer to drive (even Low gate charge (typical Qg = 19 nC). at very high frequencies), and DC/DC power supply designs with higher overall efficiency. SuperSOT[™]-6 SOIC-16 SOT-23 SuperSOT[™]-8 SOT-223 5 4 D D 6 D 3 7 2 G S **SO-8** S 8 1 **Absolute Maximum Ratings** $T_{h} = 25^{\circ}C$ unless other wise noted Symbol FDS6680 Parameter Units V_{DSS} Drain-Source Voltage 30 V V_{GSS} Gate-Source Voltage ±20 V Drain Current - Continuous 11.5 А I_{D} (Note 1a) - Pulsed 50 P_{D} Power Dissipation for Single Operation 2.5 W (Note 1a) 1.2 (Note 1b) 1 (Note 1c) T_J, T_{STG} Operating and Storage Temperature Range -55 to 150 °C THERMAL CHARACTERISTICS Thermal Resistance, Junction-to-Ambient (Note 1a) $R_{\theta JA}$ 50 °C/W 25 $R_{\theta JC}$ Thermal Resistance, Junction-to-Case (Note 1) °C/W

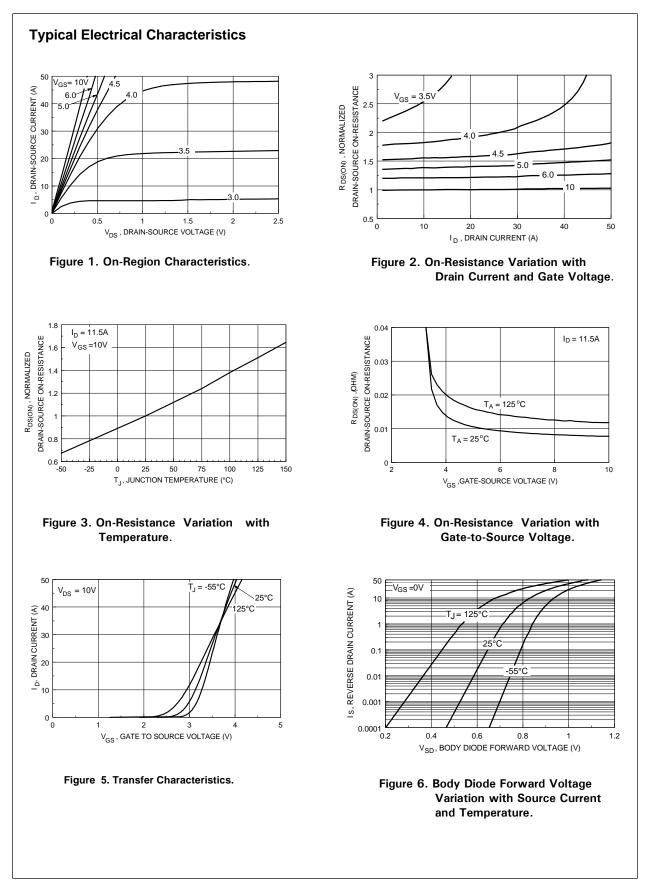
© 1998 Fairchild Semiconductor Corporation

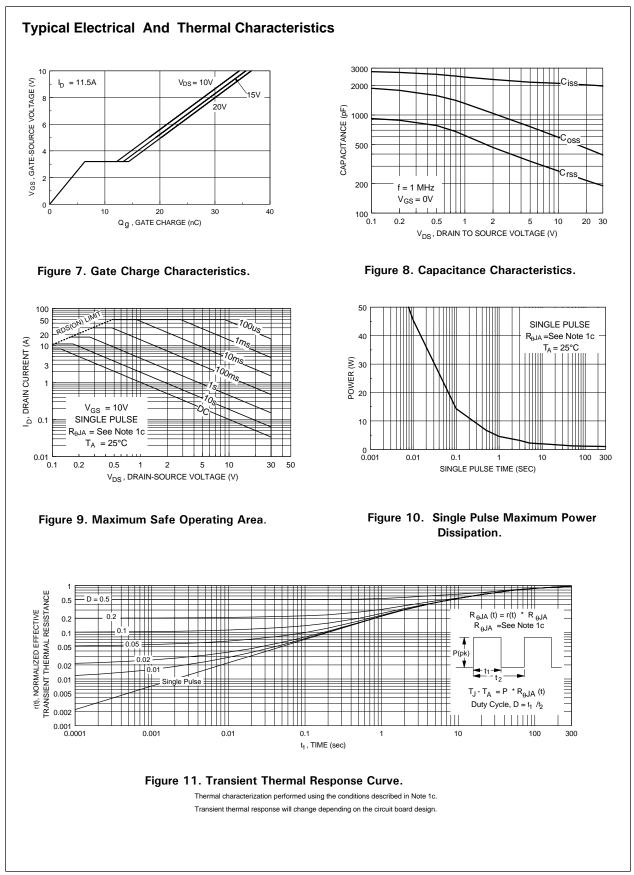
Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$	30			V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_{\rm D}$ = 250 µA, Referenced to 25 °C		23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$			1	μA
		$T_{J} = 55^{\circ}C$			10	μA
	Gate - Body Leakage, Forward	$V_{GS} = 20 V, V_{DS} = 0 V$			100	nA
	Gate - Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
ON CHARAC	CTERISTICS (Note 2)			•		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.7	3	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp.Coefficient	$I_{\rm D}$ = 250 µA, Referenced to 25 °C		-5		mV/ºC
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 11.5 \text{ A}$		0.0085	0.01	Ω
		T _. =125°C		0.014	0.017	
		$V_{GS} = 4.5 \text{ V}, I_{D} = 9.5 \text{ A}$		0.0125	0.015	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	50			Α
9 _{FS}	Forward Transconductance	$V_{\rm DS} = 15 \text{ V}, \ \text{I}_{\rm D} = 11.5 \text{ A}$		40		S
DYNAMIC C	HARACTERISTICS	·				
C _{iss}	Input Capacitance	$V_{DS} = 15 V, V_{GS} = 0 V,$		2070		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		510		pF
C _{rss}	Reverse Transfer Capacitance			235		pF
SWITCHING	CHARACTERISTICS (Note 2)					
t _{D(on)}	Turn - On Delay Time	$V_{DS} = 15 \text{ V}, \ I_{D} = 1 \text{ A}$		13	21	ns
t _r	Turn - On Rise Time	V_{GS} = 10 V , R_{GEN} = 6 Ω		10	18	ns
t _{D(off)}	Turn - Off Delay Time			36	58	ns
t,	Turn - Off Fall Time			13	23	ns
Qg	Total Gate Charge	$V_{DS} = 15 \text{ V}, \ I_{D} = 11.5 \text{ A},$		19	27	nC
Q _{gs}	Gate-Source Charge	V _{GS} =5 V		7		nC
Q _{gd}	Gate-Drain Charge			6		nC
DRAIN-SOUI	RCE DIODE CHARACTERISTICS AND MAXI	MUM RATINGS				
I _s	Maximum Continuous Drain-Source Diode Forward Current				2.1	А
V _{SD}	Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{S} = 2.1 \text{ A} (Note 2)$				1.2	V

Notes:

1. R_{guk} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{guc} is guaranteed by design while R_{guk} is determined by the user's board design.

a. 50°C/W on a 1 in² pad of 2oz copper.




b. 105°C/W on a 0.04 in² pad of 2oz copper.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8

TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.	
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconduc The datasheet is printed for reference information o	