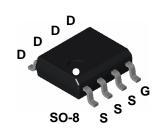
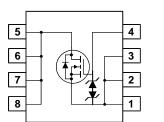
February 2006

General Description

FAIRCHILD Semiconductor

This N-Channel UltraFET device has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$ and fast switching speed.

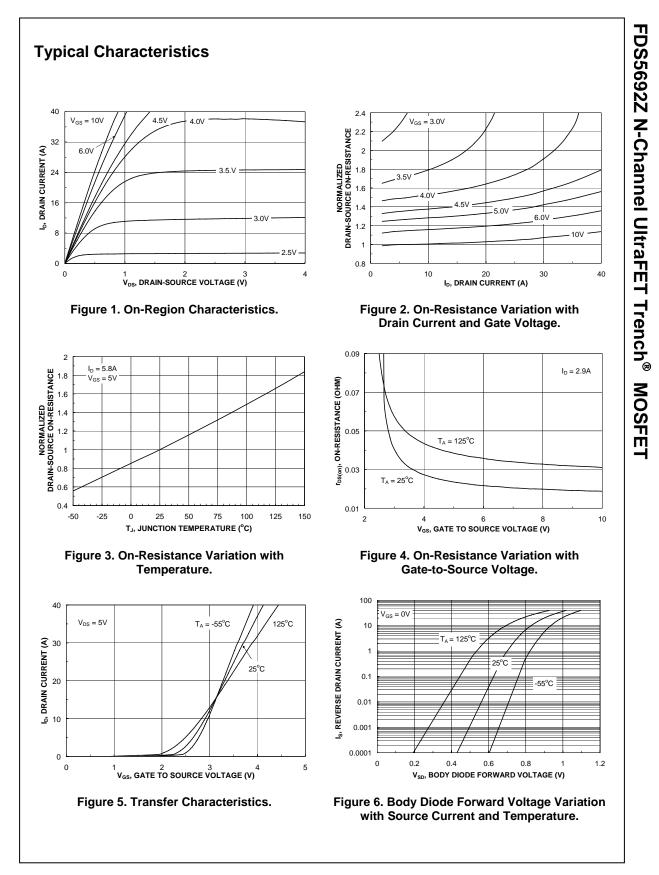

Applications



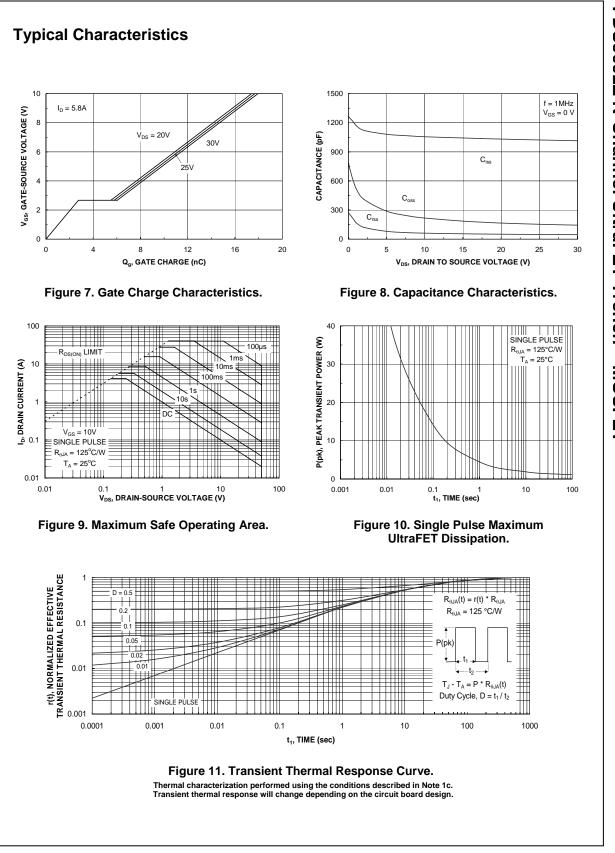
Features

- Max $r_{DS(on)} = 24m\Omega$ at $V_{GS} = 10V$, $I_D = 5.8A$
- Max $r_{DS(on)} = 33m\Omega$ at $V_{GS} = 4.5V$, $I_D = 5.6A$
- ESD protection diode (note 3)
- Low Qgd
- Fast switching speed

MOSFET Maximum Ratings TA=25°C unless otherwise noted


Symbol	Parameter				Ratings	Units	
V _{DS}	Drain-Sour	ce Voltage	50	V			
V _{GS}	Gate-Source Voltage				± 20	V	
ID	Drain Current – Continuous (Note 1a)				5.8	А	
		– Pulsed			40		
E _{AS}	Single Pulse Avalanche Energy				72	mJ	
P _D	UltraFET D	UltraFET Dissipation for Single Operation (Note 1a)				W	
	(Note 1b) (Note 1c)				1.2		
					1.1		
T _J , T _{STG}	Operating and Storage Junction Temperature Range				-55 to 150	°C	
Therma	I Charac	teristics					
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)			50	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1c)			125			
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)				25		
Packag	e Markin	g and Ordering	Informatio	on			
Device	Marking	Device	Package	Reel Size	Tape width	Quantity	
FD.S5	FDS5692Z FDS5692Z SO-8 13				12mm	2500units	

©2006 Fairchild Semiconductor Corporation FDS5692Z Rev C(W)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Avalanche Ratings					
AS	Drain-Source Avalanche Energy	$V_{DD} = 50 \text{ V}, I_{D} = 12 \text{ A}, L = 1 \text{ mH}$			72	mJ
AS	(Single Pulse) Drain-Source Avalanche Current			12		А
-				12		~
	acteristics			i	1	
BV _{DSS} ∆BVDSS	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_D = 250 \mu\text{A}$	50			V
ΔT_J	Breakdown Voltage Temperature Coefficient	I_{D} = 250 $\mu\text{A},$ Referenced to 25°C		48		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 40 \text{ V} \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
GSS	Gate–Body Leakage	$V_{\text{GS}} = \pm 20 \text{V}, \qquad V_{\text{DS}} = 0 \text{ V}$			± 10	μA
On Char	acteristics (Note 4)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.6	3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 250 \ \mu$ A, Referenced to 25°C		-6		mV/°C
ΔT_{J}	Temperature Coefficient					mv/-C
	Static Drain–Source	$V_{GS} = 10 \text{ V}, \qquad I_D = 5.8 \text{ A}$		20	24	
DS(on)	On–Resistance	$V_{GS} = 4.5 V$, $I_D = 5.6 A$ $V_{GS} = 10 V$, $I_D = 5.8A$, $T_J = 125^{\circ}C$		26 32	33 41	mΩ
D	Ohene steristice	$V_{GS} = 10$ V, $I_D = 5.6$ A, $I_J = 125$ C		52	41	
	Characteristics	1	r	4005	1	- 5
C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$		1025		pF
Coss	Output Capacitance	f = 1.0 MHz	-	150		pF
C _{rss}	Reverse Transfer Capacitance			50		pF
२ _७	Gate Resistance	f = 1.0 MHz		0.79	05	Ω
	Total Gate Charge, $V_{GS} = 10V$	-		18	25	nC
	Total Gate Charge, $V_{GS} = 5V$	$V_{DS} = 25V, I_{D} = 5.8A$		10	14	nC
	Gate-Source Gate Charge	-		2.8		nC
ସ _{gd}	Gate–Drain Gate Charge			3.0		nC
Switchin	g Characteristics (Note 4)					
d(on)	Turn–On Delay Time	$V_{DD} = 25 V, I_D = 5.8A,$		9	18	ns
r	Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5	10	ns
d(off)	Turn–Off Delay Time			27	43	ns
f	Fall Time			6	12	ns

ymbol	Parameter		Test Conditions		Min	Тур	Max	Units	
rain–S	ource Diode Characteri	istics					L	I	
D	Drain–Source Diode Forward	ł	$V_{GS} = 0 V,$		I _S = 5.8 A		0.79	1.25	V
	Voltage		$v_{\rm GS} = 0 v$,		$I_{\rm S} = 2.9 ~{\rm A}$		0.75	1.0	V
	Reverse Recovery Time Reverse Recovery Charge		$I_F = 6A, dI_F/dt = 100A/\mu s$			24		ns	
r						16		nC	
	a) 50°C/W when mounted on a 1in ² pad of 2 oz copper		b) 105°C/W whe mounted on a pad of 2 oz co	a .04 in ²	311 311	,	125°C/W minimum j	when mour bad.	nted on a
ale 1 : 1 on I	etter size paper								
		5							
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		protoction against E			oting in imp	liad		
Pulse Test: I			s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	æ overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		
Pulse Test: I	Pulse Width < 300µs, Duty Cycle < 2.0%		s protection against E	ESD. No gat	e overvoltage r	ating is imp	lied.		

FDS5692Z N-Channel UltraFET Trench[®] MOSFET

FDS5692Z Rev C(W)

FDS5692Z N-Channel UltraFET Trench[®] MOSFET

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] Build it Now [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™]	FAST [®] FASTr [™] FPS [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] I ² C [™] <i>i</i> -Lo [™] ImpliedDisconnect [™]	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OPTOLOGIC [®]	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] µSerDes [™] ScalarPump [™] SILENT SWITCHER [®]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TCM [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UltraFET [®] UniFET [™] VCX [™]
FACT Quiet Serie	IntelliMAX™	OPTOLOGIC© OPTOPLANAR™	SILENT SWITCHER SILENT START™	Wire™
	I. Around the world.™ chise [®]	PACMAN [™] POP [™] Power247 [™] PowerEdge [™]	SPM [™] Stealth [™] SuperFET [™] SuperSOT [™] -3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. I18