

FDS4885C

Dual N & P-Channel PowerTrench^o MOSFET

General Description

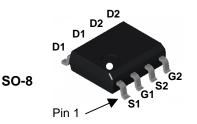
These dual N- and P-Channel enhancement mode power field effect transistors are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

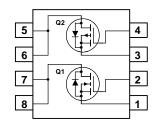
These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Applications

- Synchronous rectifier
- Backlight inverter stage

Features


Q1: N-Channel


7.5A, 40V
$$R_{DS(on)} = 22m\Omega @ V_{GS} = 10V$$

$$R_{DS(on)} = 35m\Omega @ V_{GS} = 7V$$

Q2: P-Channel

-6A, -40V
$$R_{DS(on)} = 31m\Omega$$
 @ $V_{GS} = -10V$
$$R_{DS(on)} = 42m\Omega$$
 @ $V_{GS} = -4.5V$

- Fast switching speed
- High power and handling capability in a widely used surface mount package

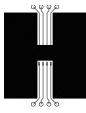
Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DSS}	Drain-Source Voltage		40	40	V
V _{GSS}	Gate-Source Voltage		±20	±20	V
I _D	Drain Current - Continuous	(Note 1a)	7.5	-6	Α
	- Pulsed		20	-20	
P _D	Power Dissipation for Dual Operation			2	W
	Power Dissipation for Single Operation (Note 1a)		1.6		
		(Note 1b)		1	
		(Note 1c)	0	.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	+150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	

Package Marking and Ordering Information


Device Marking	Device	Reel Size	Tape width	Quantity
FDS4885C	FDS4885C	13"	12mm	2500 units

Symbol	Parameter	Test Co	onditions	Type	Min	Тур	Max	Units
Off Cha	racteristics							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V},$ $V_{GS} = 0 \text{ V},$	•	Q1 Q2	40 –40			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, Refe $I_D = -250 \mu A$, Ref	erenced to 25°C	Q1 Q2		40 -30		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32 \text{ V},$ $V_{DS} = -32 \text{ V},$	-	Q1 Q2			1 -1	μА
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V},$		All			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V},$	$V_{DS} = 0 V$	All			-100	nA
On Cha	racteristics (Note 2)							•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS},$ I $V_{DS} = V_{GS},$ I	l _D = 250 μA l _D = -250 μA	Q1 Q2	2 –1	4 -1.6	5 –3	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, Refer $I_D = -250 \mu A$, Refer	renced to 25°C	Q1 Q2		_9 5		mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \qquad I$	_D = 7.5 A _D = 6.5 A	Q1		17 27 26	22 35 36	mΩ
		$V_{GS} = -10 \text{ V},$ $V_{GS} = -4.5 \text{ V},$ $I_{D} = -10 \text{ V},$ I_{D	$I_D = -5.3 \text{ A}$ -6 A, $T_J = 125^{\circ}\text{C}$	Q2		26 34 37	31 42 47	
g FS	Forward Transconductance	$V_{DS} = 10 \text{ V},$ $V_{DS} = -10 \text{ V},$ I	$I_D = 7.5 A$	Q1 Q2		14 19		S
Dynami	c Characteristics							
C _{iss}	Input Capacitance	Q1 V _{DS} = 20 V, V _{GS} = 0	0 V, f = 1.0 MHz	Q1 Q2		900 1560		pF
C _{oss}	Output Capacitance	Q2		Q1 Q2		200 215		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -20 \text{ V}, V_{GS} = -20 \text{ V}$	= 0 V, f = 1.0 MHz	Q1 Q2		100 110		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \qquad f$	f = 1.0 MHz	Q1 Q2		2 9		Ω

Electri	cal Characteristics	(continued) T _A = 25°C unless othe	rwise noted				
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Switchir	ng Characteristics (Note	2)					
$t_{d(on)}$	Turn-On Delay Time	Q1 $V_{DD} = 20 \text{ V}, I_{D} = 1 \text{ A},$	Q1 Q2		26 11	42 20	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V$, $R_{GEN} = 6 \Omega$	Q1 Q2		36 14	58 25	ns
t _{d(off)}	Turn-Off Delay Time	Q2 $V_{DD} = -20 \text{ V}, I_{D} = -1 \text{ A},$	Q1 Q2		45 71	72 114	ns
t _f	Turn-Off Fall Time	$V_{GS} = -10V$, $R_{GEN} = 6 \Omega$	Q1 Q2		33 30	53 48	ns
Q _g	Total Gate Charge	Q1 $V_{DS} = 20 \text{ V}, I_D = 7.5 \text{ A}, V_{GS} = 10 \text{ V}$	Q1 Q2		15 29	21 41	nC
Q_{gs}	Gate-Source Charge	Q2	Q1 Q2		5 4		nC
Q_{gd}	Gate-Drain Charge	$V_{DS} = -20 \text{ V}, I_{D} = -6 \text{ A}, V_{GS} = -10 \text{ V}$	Q1 Q2		4.6 5		nC
Drain-S	Source Diode Character	istics and Maximum Ratings	s				
I _S	Maximum Continuous Drain-S	Source Diode Forward Current	Q1 Q2			1.3 -1.3	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A}$ (Note 2) $V_{GS} = 0 \text{ V}, I_S = -1.3 \text{ A}$ (Note 2)	Q1 Q2		0.7 -0.7	1.2 -1.2	V
t _{rr}	Diode Reverse Recovery Time	Q1 $I_F = 7.5 \text{ A}, d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$	Q1 Q2		26 26		nS
Q _{rr}	Diode Reverse Recovery Charge	Q2 $I_F = -6 \text{ A}, d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$	Q1 Q2		18 13		nC

Notes:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 78°/W when mounted on a 0.5 in² pad of 2 oz copper

b) 125°/W when mounted on a .02 in² pad of 2 oz copper

c) 135°/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

Typical Characteristics: Q1 (N-Channel)

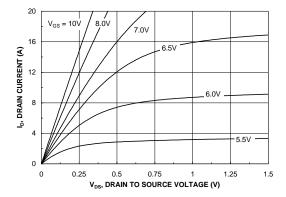


Figure 1. On-Region Characteristics.

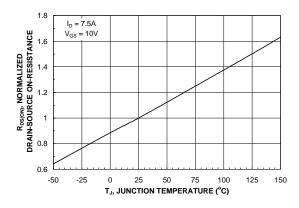


Figure 3. On-Resistance Variation with Temperature.

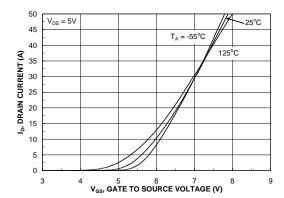


Figure 5. Transfer Characteristics.

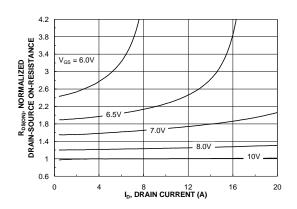


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

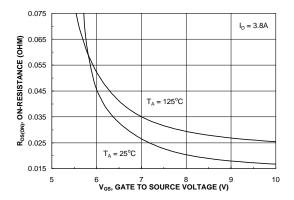


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

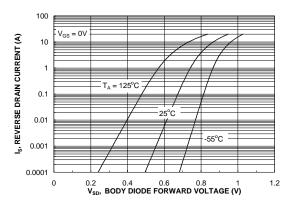


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q1 (N-Channel)

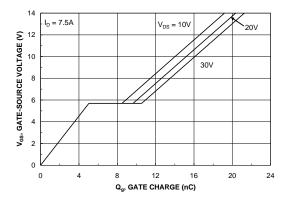


Figure 7. Gate Charge Characteristics.

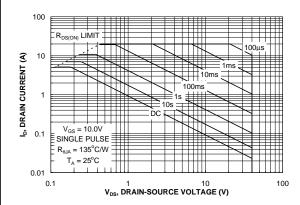


Figure 9. Maximum Safe Operating Area.

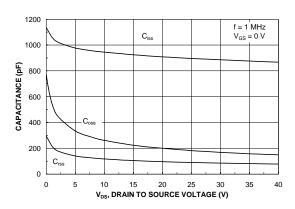


Figure 8. Capacitance Characteristics.

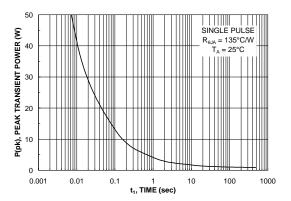


Figure 10. Single Pulse Maximum Power Dissipation.

Typical Characteristics: Q2 (P-Channel)

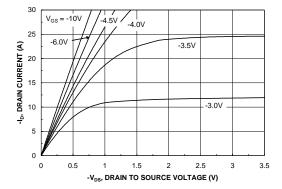


Figure 11. On-Region Characteristics.

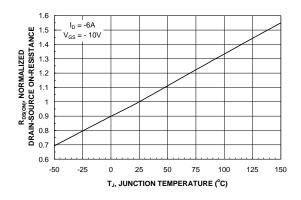


Figure 13. On-Resistance Variation with Temperature.

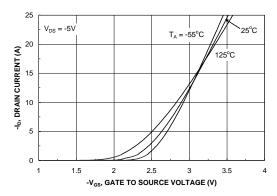


Figure 15. Transfer Characteristics.

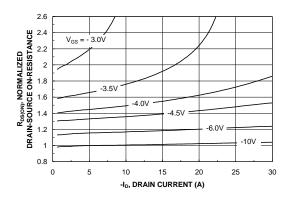


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

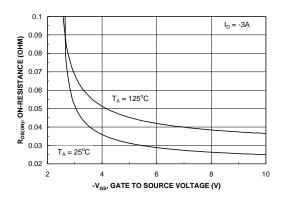


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

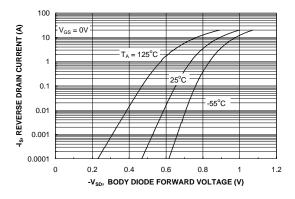
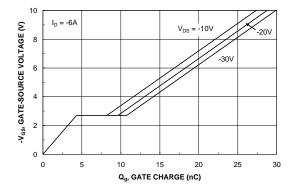



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2 (P-Channel)

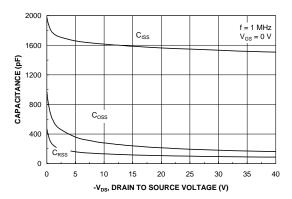


Figure 17. Gate Charge Characteristics.

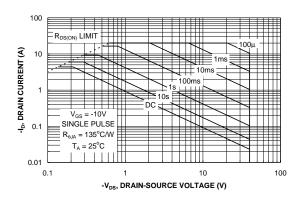


Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

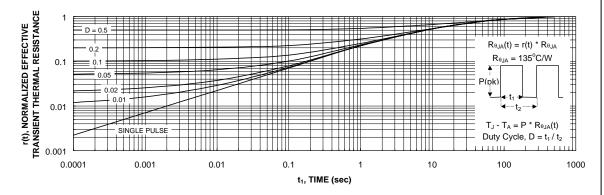


Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST®	IntelliMAX™	POPTM	SPM™
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench®	SuperSOT™-6
DOME™	GTO™ .	MicroPak™	QFET®	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
E ² CMOS TM	I ² C TM	MSX TM	QT Optoelectronics™	TinyLogic [®]
EnSigna™	i-Lo™	MSXPro™	Quiet Series™	TINYOPTO™
FACT™	ImpliedDisconnect™	OCX^{TM}	RapidConfigure™	TruTranslation™
FACT Quiet Series [™]		OCXPro™	RapidConnect™	UHC™
Across the boar	d. Around the world.™	OPTOLOGIC®	μSerDes™	UltraFET [®]
The Power Fran		OPTOPLANAR™	SILENT SWITCHER®	UniFET™
Programmable A		PACMAN™	SMART START™	VCX TM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I15