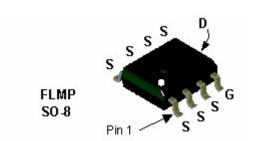
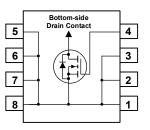


FDS4072N7 40V N-Channel PowerTrench[®] MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for "low side" synchronous rectifier operation, providing an extremely low $R_{DS(ON)}$ in a small package.


Applications

- Synchronous rectifier
- DC/DC converter

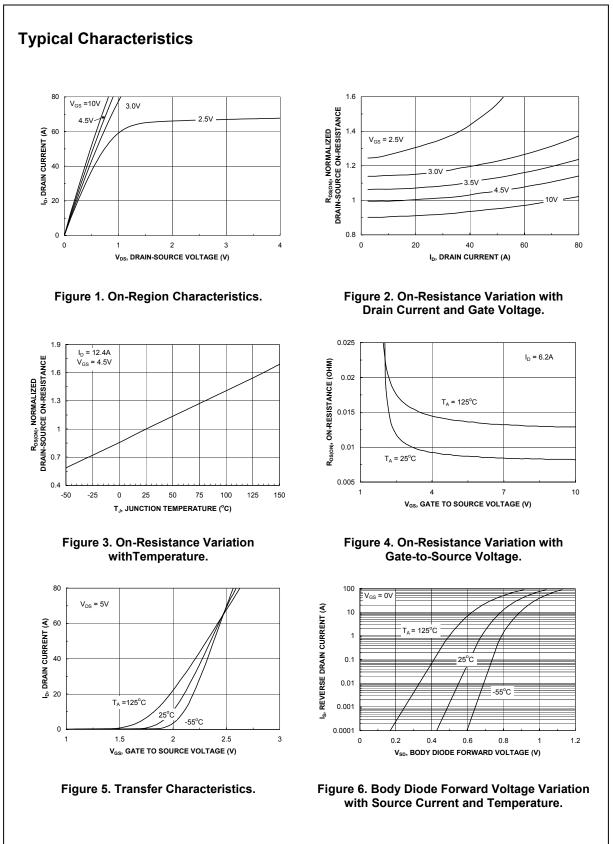
Features

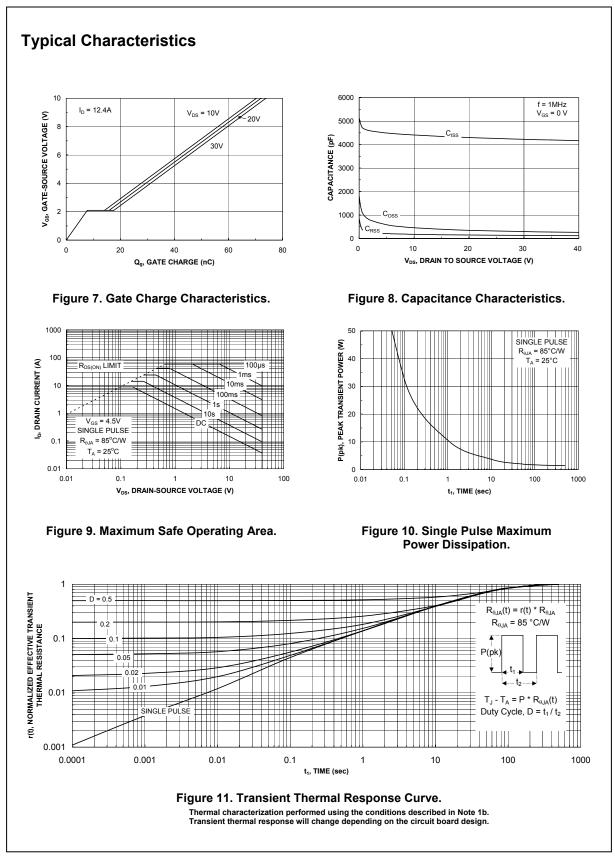
- 12.4 A, 40 V $R_{DS(ON)} = 11 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 9 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability
- Fast switching
- FLMP SO-8 package: Enhanced thermal performance in industry-standard package size

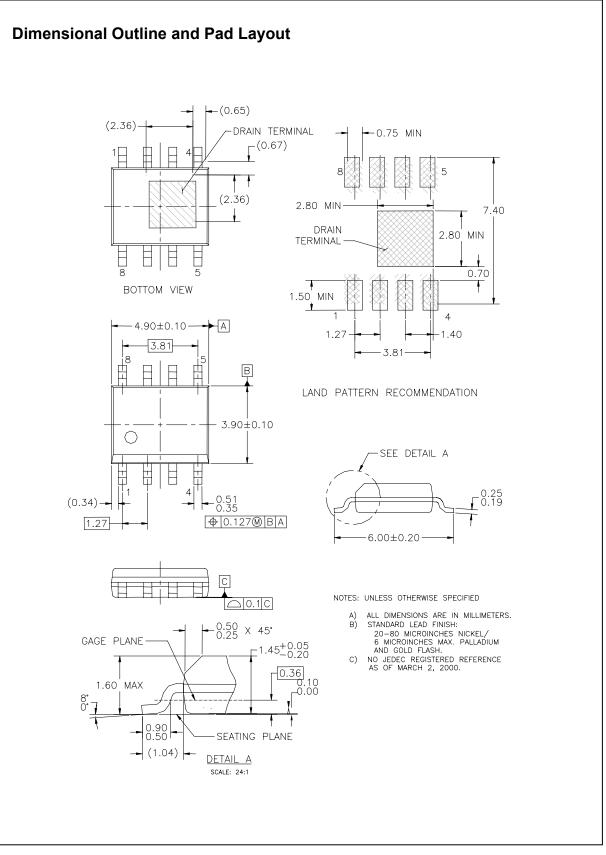
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			40	V
V _{GSS}	Gate-Source Voltage			± 12	V
I _D	Drain Current – Continuous (Note 1a)			12.4	A
		– Pulsed		60	
P _D	Power Dissipation (Note 1a)			3.0	W
			(Note 1b)	1.5	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C
I herma R _{0JA}	Thermal Re	teristics esistance, Junction-to-A	mbient (Note 1a)	40	°C/W
	Thermal Re		· · · ·	40	
R _{θJA} R _{θJC}	Thermal Re Thermal Re	esistance, Junction-to-A	Case		°C/W °C/W
R _{0JA} R _{0JC} Packag	Thermal Re Thermal Re	esistance, Junction-to-A esistance, Junction-to-C	Case		

©2004 Fairchild Semiconductor Corporation


Electrical Characteristics $T_{A} = 25^{\circ}C$ unless otherwise noted Symbol Parameter Min Max Units **Test Conditions** Тур Drain-Source Avalanche Ratings (Note 2) E_{AS} Drain-Source Avalanche Energy Single Pulse, V_{DD} = 20V, I_D=12.4 A 200 mJ Drain-Source Avalanche Current 12.4 А I_{AS} **Off Characteristics** Drain–Source Breakdown Voltage 40 V $\mathsf{BV}_{\mathsf{DSS}}$ $V_{GS} = 0 V$, I_D = 250 μA I_D = 250 μ A, Referenced to 25°C Breakdown Voltage Temperature 38 mV/°C ΔBV_{DSS} Coefficient $\Delta T_{\rm J}$ Zero Gate Voltage Drain Current V_{DS} = 32 V, $V_{GS} = 0 V$ 1 IDSS μA Gate-Body Leakage, Forward V_{GS} = 12 V, $V_{DS} = 0 V$ 100 nA I_{GSSF} $V_{DS} = 0 V$ Gate-Body Leakage, Reverse $V_{GS} = -12 V$, -100 nA I_{GSSR} On Characteristics (Note 2) $V_{DS} = V_{GS}$, Gate Threshold Voltage I_D = 250 μA 1 1.3 3 V $V_{\text{GS(th)}}$ Gate Threshold Voltage $I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$ -4.5 $\Delta V_{GS(th)}$ mV/°C **Temperature Coefficient** ΔT_{J} $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 12.4 \text{ A}$ R_{DS(on)} Static Drain-Source 9 11 mΩ **On-Resistance** $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 13.7 \text{ A}$ 8 9 V_{GS} = 4.5 V, I_D = 12.4 A,T_J = 125°C 14 18 Forward Transconductance I_D = 12.4 A 84 S $V_{DS} = 10 V$, **g**_{FS} **Dynamic Characteristics** pF C_{iss} Input Capacitance 4299 $V_{DS} = 20 V$, V_{GS} = 0 V, C_{oss} **Output Capacitance** f = 1.0 MHz 351 pF C_{rss} pF **Reverse Transfer Capacitance** 149 Switching Characteristics (Note 2) $V_{DD} = 20 V$, $I_{D} = 1 A$, Turn-On Delay Time 20 36 t_{d(on)} ns V_{GS} = 4.5 V, R_{GEN} = 6 Ω Turn–On Rise Time 12 22 tr ns Turn-Off Delay Time 52 83 ns t_{d(off)} tf Turn-Off Fall Time 18 32 ns $V_{DS} = 20 V$, $I_{D} = 12.4 \text{ A},$ Qg Total Gate Charge 33 46 nC $V_{GS} = 4.5 V$ nC Q_{gs} Gate-Source Charge 7.8 Q_{gd} Gate-Drain Charge nC 8.1 Drain–Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current 2.5 A I_S Drain–Source Diode Forward 0.7 V V_{SD} $V_{GS} = 0 V$, $I_{S} = 2.5 A$ (Note 2) 1.2 Voltage trr **Diode Reverse Recovery Time** $I_{\rm F} = 12.4 \, {\rm A},$ 30 nS $d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$ Q_{rr} Diode Reverse Recovery Charge 90 nC


Note: 1. State is the sum of the junction-to-case and case-to-ambit thermal resistance where the case thermal reference is defined as the solder mounting surface of the dark pine. Ruce is guaranteed by design while RucA is determined by the user's board design. a) do 'CW when mounted on a lin' pad of 2 oz opper b) B'CW when mounted on a lin' pad of 2 oz opper b) B'CW when mounted on a lin' pad of 2 oz opper b) B'CW when mounted on a lin' pad of 2 oz opper b) B'CW when mounted on a lin' pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted on a minimum pad of 2 oz opper b) B'CW when mounted opper (B) B'CW when mounted opper (B)


 $T_A = 25^{\circ}C$ unless otherwise noted

Electrical Characteristics

FDS4072N7 Rev C2 (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	ISOPLANAR™	POP™	Stealth™
ActiveArray™	FAST®	LittleFET™	Power247™	SuperFET™
Bottomless™	FASTr™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FPS™	MicroFET™	PowerTrench [®]	SuperSOT [™] -6
CROSSVOLT™	FRFET™	MicroPak™	QFET [®]	SuperSOT [™] -8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™່	MSX™	QT Optoelectronics [™]	TinyLogic [®]
E ² CMOS [™]	HiSeC™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	I ² C [™]	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
Across the boar	d. Around the world.™	OPTOLOGIC [®]	SILENT SWITCHER®	UltraFET [®]
The Power Fran		OPTOPLANAR™	SMART START™	VCX™
Programmable A		PACMAN™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production