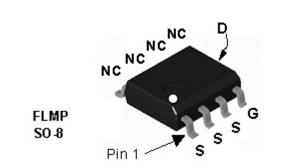
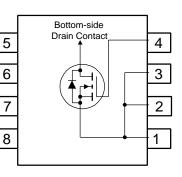
FDS2170N3 200V N-Channel PowerTrench^o MOSFET

General Description

FAIRCHILD SEMICONDUCTOR


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for "low side" synchronous rectifier operation, providing an extremely low $R_{DS(ON)}$ in a small package.


Applications

- Synchronous rectifier
- DC/DC converter

Features

- 3.0 A, 200 V. $R_{\text{DS(ON)}}$ = 128 m Ω @ V_{GS} = 10 V
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability
- Fast switching, low gate charge (26nC typical)
- FLMP SO-8 package: Enhanced thermal performance in industry-standard package size

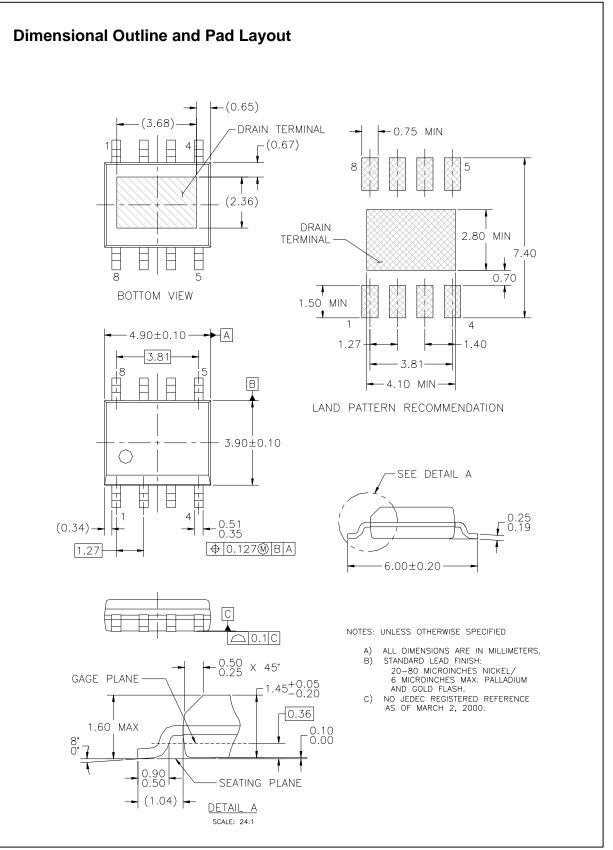
Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source	ce Voltage		200	V
V _{GSS}	Gate-Sourc	e Voltage		± 20	V
ID	Drain Curre	nt – Continuous	(Note 1a)	3.0	A
		– Pulsed		20	
PD	Power Diss	ipation for Single Operatio	n (Note 1a)	3.0	W
			(Note 1b)	1.8	
T _J , T _{STG}	Operating a	Operating and Storage Junction Temperature Range		-55 to +150	°C
Therma	l Charac	teristics			
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		40	°C/W	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)			0.5	
Packag	e Markin	g and Ordering I	nformation		
Device Marking		Device	Reel Size	Tape width	Quantity
FDS2170N3		FDS2170N3	13"	12mm	2500 units

©2004 Fairchild Semiconductor Corporation

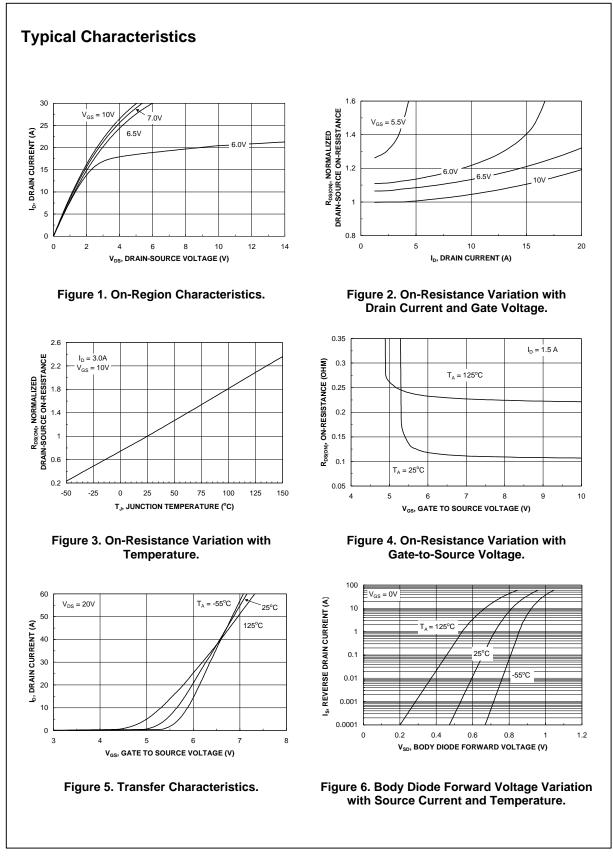
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (Note	≥ 2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 200 \text{ V}$, $I_D = 10 \text{ A}$			400	mJ
AR	Drain-Source Avalanche Current				10	А
Off Char	acteristics	•				•
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	200			V
Δ <u>BV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		231		mV/°C
DSS	Zero Gate Voltage Drain Current	V _{DS} = 160 V, V _{GS} = 0 V			1	μA
GSSF	Gate–Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate–Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	4	4.5	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 250 \ \mu$ A, Referenced to 25°C	-		1.0	
ΔT_J	Temperature Coefficient			-10		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}$		108	128	mΩ
	On–Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 3.0 \text{ A}, \text{T}_{J} = 125^{\circ}\text{C}$		214	268	
JFS	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 3.0 \text{ A}$		15		S
Dynamic	Characteristics					•
Ciss	Input Capacitance	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V},$		1292		pF
Coss	Output Capacitance	f = 1.0 MHz		72		pF
Crss	Reverse Transfer Capacitance			24		pF
₹ _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \text{ f} = 1.0 \text{ MHz}$		1.5		Ω
Switchin	g Characteristics (Note 2)					
d(on)	Turn–On Delay Time	$V_{DD} = 100 V, I_D = 1 A,$		12	22	ns
r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		5	10	ns
d(off)	Turn–Off Delay Time			30	48	ns
f	Turn–Off Fall Time			23	36	ns
Jg	Total Gate Charge	$V_{DS} = 100 \text{ V}, I_D = 3.0 \text{ A},$		26	36	nC
λ _{gs}	Gate-Source Charge	V _{GS} = 10 V		7		nC
⊋ _{gd}	Gate-Drain Charge			10		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				•
s	Maximum Continuous Drain–Source				2.5	Α
/ _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.5 A$ (Note 2)		0.76	1.2	V
rr	Diode Reverse Recovery Time	I _F = 3.0A		95		nS
2 ⁿ	Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$ (Note 2)		552		nC

a) 40°C/W when mounted on a 1in² pad of 2 oz copper

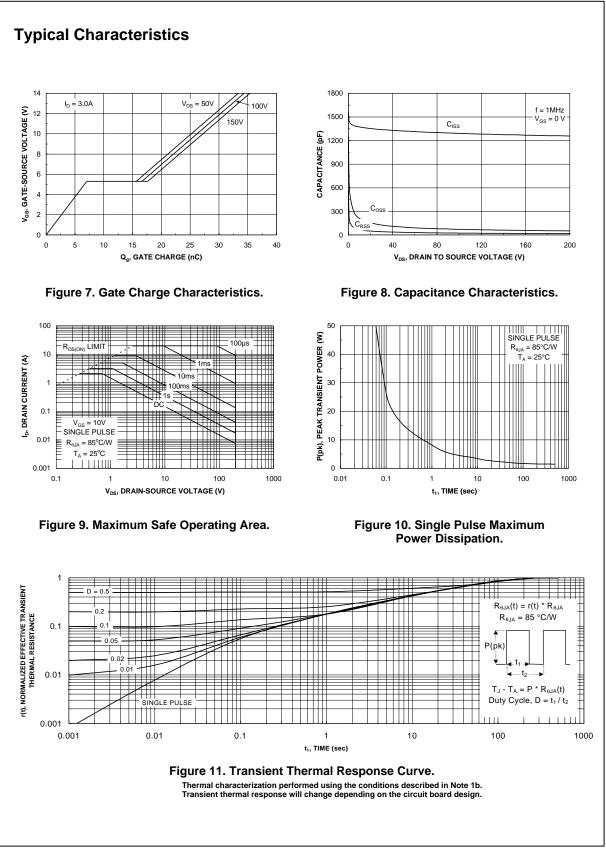

b) 85°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%


FDS2170N3 Rev C(W)

FDS2170N3



FDS2170N3

FDS2170N3 Rev C(W)

FDS2170N3

FDS2170N3

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	LittleFET™	Power247™	SuperSOT™-3
ActiveArray™	FAST®	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
Bottomless™	FASTr™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	FRFET™	MicroPak™	QS™	SyncFET™
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic®
DOME™	GTO™່	MSX™	Quiet Series [™]	TINYOPTO™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	TruTranslation™
E ² CMOS [™]	I²C™	OCX™	RapidConnect™	UHC™
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	UltraFET®
FACT™	ISOPLANAR™	OPTOLOGIC[®]	SMART START™	VCX™
Across the boar	d. Around the world.™	OPTOPLANAR™	SPM™	
The Power Fran		PACMAN™	Stealth™	
Programmable A		POP™	SuperFET™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production