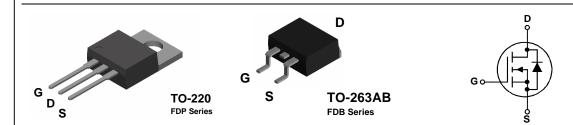
May 2003

FDP6670AL/FDB6670AL

N-Channel Logic Level PowerTrench^o MOSFET

General Description

This N-Channel Logic Level MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{\text{DS(ON)}}$ specifications.

The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

It has been optimized for low gate charge, low $R_{\text{DS}(\text{ON})}$ and fast switching speed.

Features

- 80 A, 30 V $R_{DS(ON)} = 6.5 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 8.5 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Critical DC electrical parameters specified at elevated temperature
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- 175°C maximum junction temperature rating

Absolute Maximum Ratings T_A=25°C unless otherwise noted

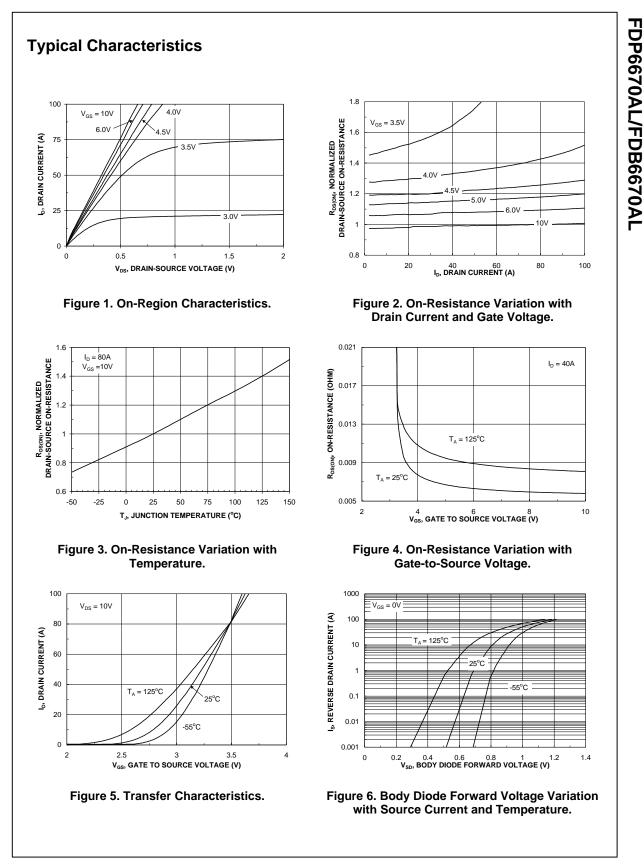
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		± 20	V
ID	Drain Current – Continuous	(Note 1)	80	А
	- Pulsed	(Note 1)	240	
P _D	Total Power Dissipation @ T _c = 25°C Derate above 25°C		68	W
			0.45	W/°C
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-65 to +175	°C

Thermal Characteristics

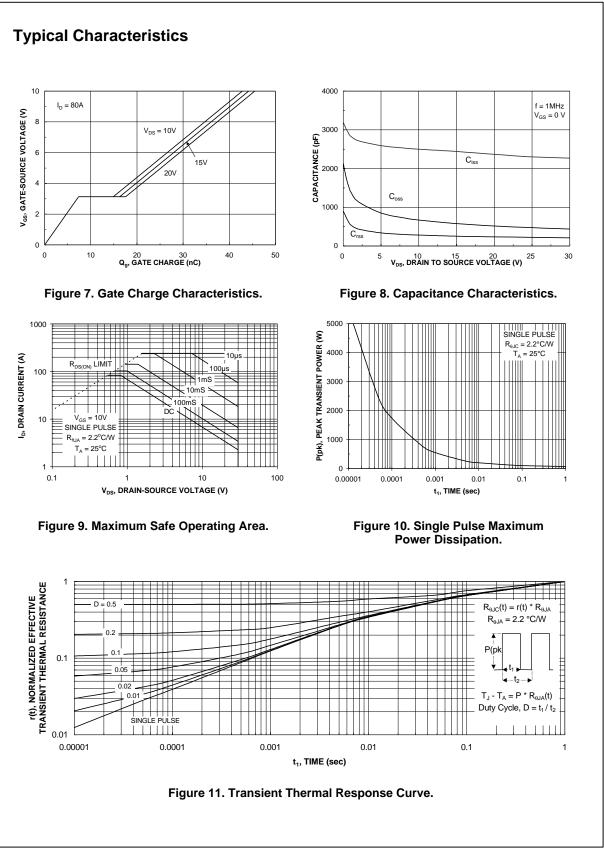
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	2.2	°C/W
R _{0JA} Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDB6670AL	FDB6670AL	13"	24mm	800 units
FDP6670AL	FDP6670AL	Tube	n/a	45


©2003 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Symbol	Falameter	Test conditions		тур	WIAX	Units
Drain-Sc	purce Avalanche Ratings (Note					
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 15 \text{ V}, \qquad I_D = 80 \text{ A}$			114	mJ
AR	Maximum Drain-Source Avalanche Current				80	A
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS}=0~V, \qquad I_D=250~\mu A$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C		24		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS}=\pm~20~V,~~V_{DS}=0~V$			± 100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.9	3	V
$\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-5		mV/°C
R _{DS(on)}	Static Drain–Source On– Resistance			5.2 6.5 7.2	6.5 8.5 9.7	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$	80		0.1	А
g _{FS}	Forward Transconductance	$V_{DS} = 10V, I_D = 40 A$		115		S
-						-
	Characteristics			2440		pF
	Output Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$, f = 1.0 MHz		580		pr pF
C _{rss}	Reverse Transfer Capacitance			250		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$		1.4		Ω
Switchin	g Characteristics (Note 2)			I		1
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 10V,$ $I_{D} = 1 A,$		13	23	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		13	23	ns
t _{d(off)}	Turn–Off Delay Time			42	68	ns
t _f	Turn–Off Fall Time			15	27	ns
Q _g	Total Gate Charge	$V_{DS} = 15 V, I_D = 40 A,$		24	33	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		7		nC
Q _{gd}	Gate-Drain Charge			9		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source				80	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 40 A$ (Note 1)		0.9	1.3	V
t _{rr}	Diode Reverse Recovery Time	I _F = 40 A,		34		nS
Q _{rr}	Diode Reverse Recovery Charge	d _{iF} /d _t = 100 A/μs		24		nC


Notes:

1. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

FDP6670AL/FDB6670AL

FDP6670AL/FDB6670AL Rev D(W)

FDP6670AL/FDB6670AL

FDP6670AL/FDB6670AL Rev D(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT™	ImpliedDisconnect™	PACMAN™	SPM™
ActiveArray™	FACT Quiet Series™	ISOPLANAR™	POP™	Stealth™
Bottomless™	FAST®	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	FRFET™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic®
E ² CMOS [™]	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	l²C™	OCX™	RapidConfigure™	UHC™
Across the board.	Around the world.™	OCXPro™	RapidConnect™	UltraFET®
The Power Franch	nise™	OPTOLOGIC [®]	SILENT SWITCHER [®]	VCX™
Programmable Ac	tive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. I3