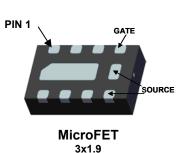
December 2005

FDMB506P

FDMB506P

FAIRCHILD Semiconductor

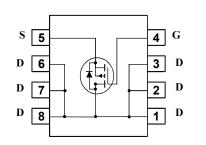

P-Channel 1.8V Logic Level PowerTrench[®] MOSFET

General Description

This P-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance. These devices are well suited for portable electronics applications.

Applications

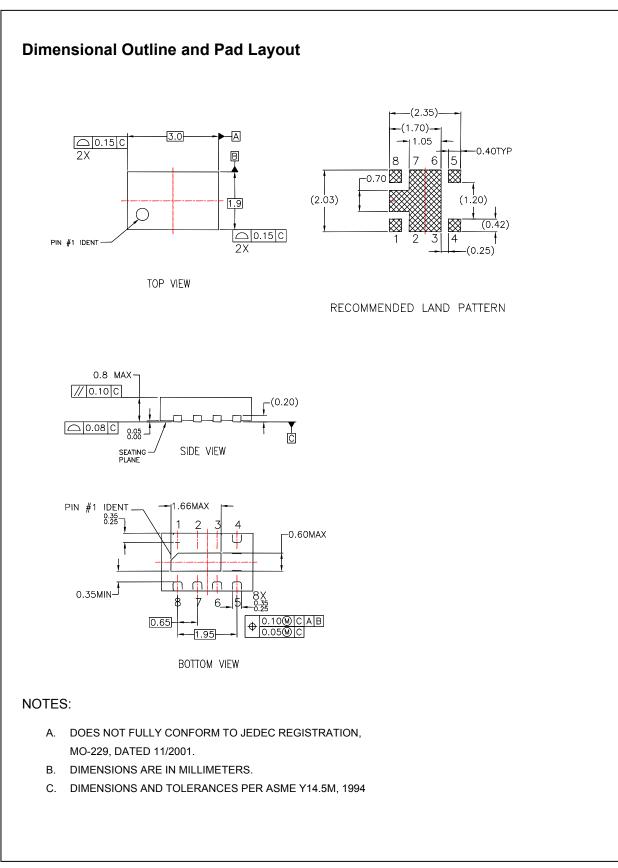
- Load switch
- DC/DC Conversion



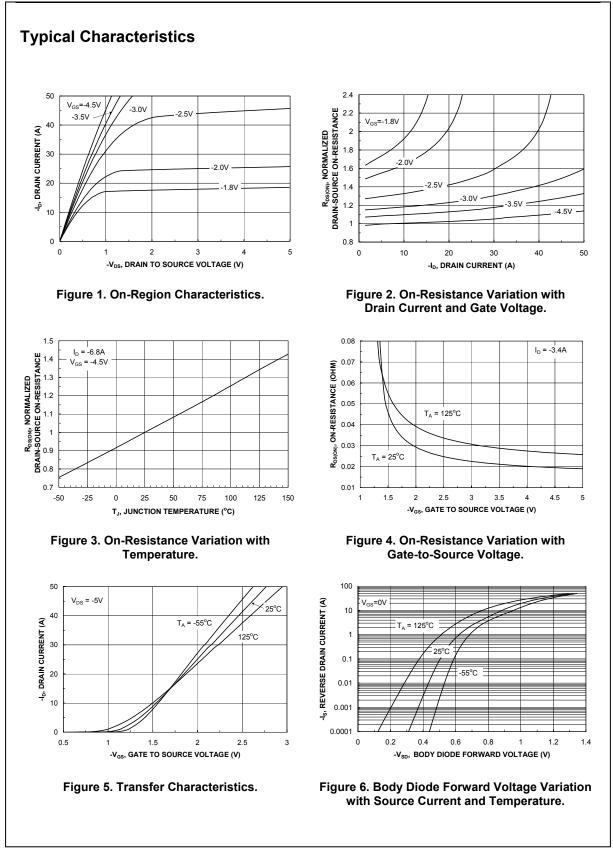
Features

• -6.8 A, -20V. $R_{DS(ON)} = 30 \text{ m}\Omega \textcircled{0} V_{GS} = -4.5 V$ $R_{DS(ON)} = 38 \text{ m}\Omega \textcircled{0} V_{GS} = -2.5 V$ $R_{DS(ON)} = 70 \text{ m}\Omega \textcircled{0} V_{GS} = -1.8 V$

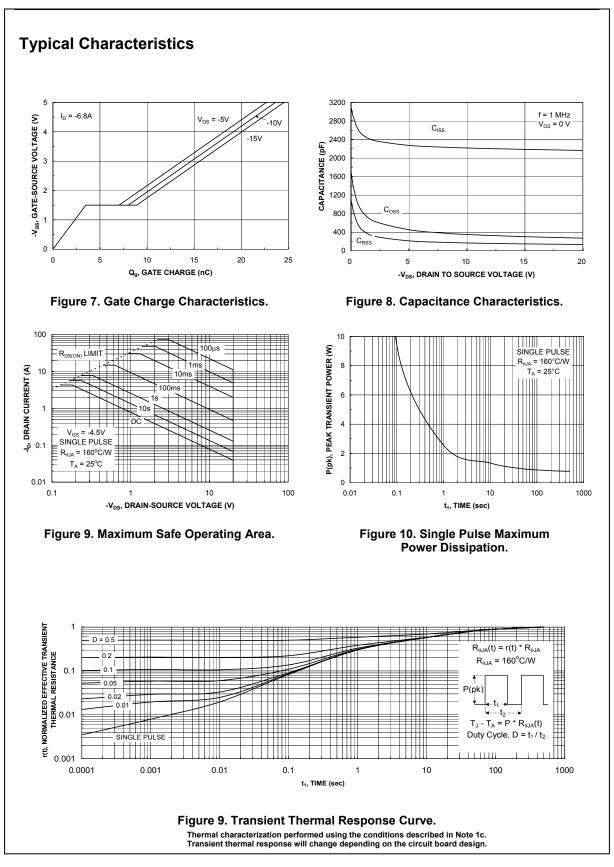
- Low profile 0.8 mm maximum
- Fast switching
- RoHS compliant



Absolute Maximum Ratings T_A=25°C unless otherwise noted


Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			-20	V
V _{GSS}	Gate-Source Voltage			±8	
ID	Drain Current – Continuous (Note 1a)		(Note 1a)	-6.8	А
	– Pulsed			70	
PD	Power Diss	ipation	(Note 1a)	1.9	
T _J , T _{stg}	Operating and Storage Junction Temperature Range			–55 to +150	°C
Therma R _{0JA}	1	cteristics	mbient (Note 1a)	65	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient (Note 1b)			208	
Package Markin Device Marking 506		ng and Orderin Device	g Information Reel Size	Tape width	Quantity
	-	FDMB506P	7"	8mm	3000 units

2005 Fairchild Semiconductor Corporation


istics -Source Breakdown Voltage down Voltage Temperature icient Gate Voltage Drain Current -Body Leakage istics (Note 2) Threshold Voltage Threshold Voltage	$\begin{array}{l} V_{GS} = 0 \ V, & I_{D} = -250 \ \mu A \\ I_{D} = -250 \ \mu A, \ \text{Referenced to } 25^{\circ}\text{C} \\ \end{array}$ $\begin{array}{l} V_{DS} = -16 \ V, & V_{GS} = 0 \ V \\ V_{GS} = \pm 8 \ V, & V_{DS} = 0 \ V \\ \end{array}$ $\begin{array}{l} V_{DS} = V_{GS}, & I_{D} = -250 \ \mu A \end{array}$	-20	-13	-1 ±100	V mV/°C μA nA
-Source Breakdown Voltage down Voltage Temperature icient Gate Voltage Drain Current -Body Leakage istics (Note 2) Threshold Voltage	$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -16 \ \text{V}, V_{GS} = 0 \ \text{V}$ $V_{GS} = \pm 8 \ \text{V}, V_{DS} = 0 \ \text{V}$	-20	-13		mV/°C μA
kdown Voltage Temperature icient Gate Voltage Drain Current -Body Leakage istics (Note 2) Threshold Voltage	$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -16 \ \text{V}, V_{GS} = 0 \ \text{V}$ $V_{GS} = \pm 8 \ \text{V}, V_{DS} = 0 \ \text{V}$		-13		μA
-Body Leakage istics (Note 2) Threshold Voltage	$V_{GS} = \pm 8 V$, $V_{DS} = 0 V$				•
istics (Note 2) Threshold Voltage	$V_{GS} = \pm 8 V$, $V_{DS} = 0 V$			±100	nA
Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = -250 \ \mu A$	_			
Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$				
Threshold Voltage		-0.4	-0.7	-1.5	V
erature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C		3		mV/°C
Drain–Source Resistance	$ \begin{array}{l} V_{GS} = -4.5 \ V, I_D = -6.8 \ A \\ V_{GS} = -2.5 \ V, I_D = -2.5 \ A \\ V_{GS} = -1.8 \ V, I_D = -1.8 \ A \\ V_{GS} = -4.5 \ V, \ I_D = -6.8 \ A, \ T_J = 125^\circ C \end{array} $		25 30 40 36	30 38 70 44	mΩ
ard Transconductance	$V_{DS} = -5 V$, $I_{D} = -6.8 A$		26		s
racteristics					
	$V_{DS} = -10 V$, $V_{CS} = 0 V$.		2216	2960	pF
ut Capacitance	f = 1.0 MHz		351	470	pF
rse Transfer Capacitance	1		167	260	pF
aracteristics (Note 2)			1		
	$V_{DD} = -10 V$. $I_D = -1 A$.		14	25	ns
,	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		8	16	ns
			175	280	ns
-Off Fall Time	1		80	128	ns
Gate Charge	$V_{DS} = -10 V$, $I_D = -6.8 A$,		21	30	nC
-Source Charge	$V_{GS} = -4.5 V$		3.5		nC
-Drain Charge	1		4.5		nC
Diode Characteristics	and Maximum Ratings				
				1.6	А
	$V_{GS} = 0 V$, $I_{S} = -0.8 A$ (Note 2)		-0.6	-1.2	V
e Reverse Recovery Time	$I_{\rm F} = -6.8 {\rm A},$		26	48	nS
e Reverse Recovery Charge	d _i ⊧/d _t = 100 A/µs		12	22	nC
	num Continuous Drain–Source –Source Diode Forward ge e Reverse Recovery Time e Reverse Recovery Charge f the junction-to-case and case-to-ambie	$V_{GS} = -1.8 \text{ V}, I_D = -1.8 \text{ A} \\ V_{GS} = -4.5 \text{ V}, I_D = -6.8 \text{ A}, T_J = 125^{\circ}\text{C}$ ard Transconductance $V_{DS} = -5 \text{ V}, I_D = -6.8 \text{ A}$ racteristics $Capacitance \qquad V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ rese Transfer Capacitance $aracteristics (Note 2)$ -On Delay Time $-On \text{ Diagy Time} \qquad V_{DD} = -10 \text{ V}, I_D = -1 \text{ A}, V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ -Off Delay Time $-Off \text{ Fall Time} \qquad V_{DS} = -10 \text{ V}, I_D = -6.8 \text{ A}, V_{GS} = -4.5 \text{ V}$ -Source Charge $-Drain \text{ Charge} \qquad V_{DS} = -10 \text{ V}, I_D = -6.8 \text{ A}, V_{GS} = -4.5 \text{ V}$ $Diode Characteristics and Maximum Ratings$ num Continuous Drain–Source Diode Forward Current $-Source \text{ Diode Forward} \qquad V_{GS} = 0 \text{ V}, I_S = -0.8 \text{ A}(\text{Note 2})$ $e \text{ Reverse Recovery Time} \qquad I_F = -6.8 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mu \text{ s}$	$V_{GS} = -1.8 \text{ V}, I_D = -1.8 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -6.8 \text{ A}, T_J = 125 °C$ ard Transconductance $V_{DS} = -5 \text{ V}, I_D = -6.8 \text{ A}$ racteristicsCapacitance $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ art Capacitance $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ art Capacitance $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ aracteristics (Note 2)-On Delay Time $V_{DD} = -10 \text{ V}, I_D = -1 \text{ A},$ On Rise Time $V_{DD} = -10 \text{ V}, I_D = -1 \text{ A},$ Off Fall Time $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ Off Fall Time $V_{DS} = -10 \text{ V}, I_D = -6.8 \text{ A},$ -Order Charge $V_{GS} = -4.5 \text{ V}$ -Drain Charge $V_{GS} = -4.5 \text{ V}$ Diode Characteristics and Maximum Ratingsnum Continuous Drain-Source Diode Forward Current-Source Diode Forward $V_{GS} = 0 \text{ V}, I_S = -0.8 \text{ A}(Note 2)$ ge e Reverse Recovery Time $I_F = -6.8 \text{ A},$ e Reverse Recovery Charge $I_F = -0.8 \text{ A},$ $d_{IF}/d_t = 100 \text{ A}/\mu \text{ S}$	$V_{GS} = -1.8 \text{ V}, I_D = -1.8 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -6.8 \text{ A}, T_J = 125 ^{\circ}\text{C}$ 40 36ard Transconductance $V_{DS} = -5 \text{ V}, I_D = -6.8 \text{ A}$ 26racteristicsCapacitance $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ 2216it Capacitancef = 1.0 \text{ MHz}351rse Transfer Capacitance167aracteristics (Note 2)-On Delay Time $V_{DD} = -10 \text{ V}, I_D = -1 \text{ A}, V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ -Off Delay Time $V_{DS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ -Off Fall Time80Gate Charge $V_{DS} = -10 \text{ V}, I_D = -6.8 \text{ A}, V_{GS} = -4.5 \text{ V}$ -Source Charge $V_{GS} = -4.5 \text{ V}$ -Drain Charge $V_{GS} = -10 \text{ V}, I_D = -6.8 \text{ A}, V_{GS} = -4.5 \text{ V}$ -Diode Characteristics and Maximum Ratingsnum Continuous Drain–Source Diode Forward Current-Source Diode Forward-Source Diode Forward $V_{GS} = 0 \text{ V}, I_S = -0.8 \text{ A}(Note 2)$ -0.6gea Reverse Recovery Time $I_F = -6.8 \text{ A}, d_F/d_t = 100 \text{ A}/\mu \text{ S}$ I_F I_F the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder m	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

FDMB506P

FDMB506P

FDMB506P

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST® ActiveArray™ FASTr™ Bottomless™ FPS™ Build it Now™ FRFET™ CoolFET™ GlobalOptoisolator™ GTO™ CROSSVOLT™ DOME™ HiSeC™ **EcoSPARK**[™] I²C™ E²CMOS™ i-Lo™ EnSigna™ ImpliedDisconnect[™] FACT™ IntelliMAX™ FACT Quiet Series™ Across the board. Around the world.™ The Power Franchise[®] Programmable Active Droop[™]

ISOPLANARTM LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXTM OCXProTM OCXProTM OPTOLOGIC[®] OPTOPLANARTM POPTM Power247TM

PowerEdgeTM PowerSaverTM PowerTrench[®] QFET[®] QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM µSerDesTM ScalarPumpTM SILENT SWITCHER[®] SMART STARTTM SPMTM StealthTM SuperFETTM SuperSOT^{TM-3} SuperSOT^{TM-6} SuperSOT^{TM-8} SyncFETTM TCMTM TinyLogic[®] TINYOPTOTM TruTranslationTM UHCTM UNIFETTM UltraFET[®] VCXTM WireTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only.		

PRODUCT STATUS DEFINITIONS Definition of Terms