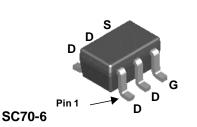
August 2001

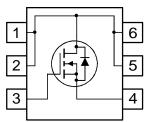
FDG361N N-Channel 100V Specified PowerTrench®MOSFET

General Description


SEMICONDUCTOR IM

These N-Channel 100V specified MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain low gate charge for superior switching performance.

These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the bigger more expensive SO-8 and TSSOP-8 packages are impractical.


Applications

- Load switch
- Battery protection
- Power management

- 0.6 A, 100 V. $R_{DS(ON)}$ = 500 m Ω @ V_{GS} = 10 V
 - $R_{DS(ON)}$ = 550 m Ω @ V_{GS} = 6.0 V
- Low gate charge (3.7nC typical)
- Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}

Absolute Maximum Ratings T_A=25°C unless otherwise noted

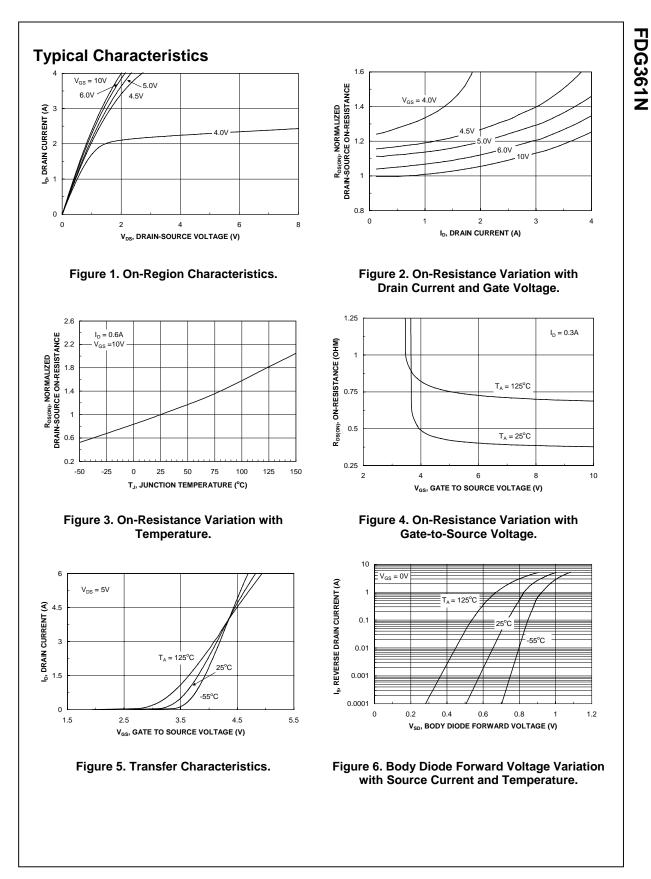
Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			100	
V _{GSS}	Gate-Source Voltage			±20	
I _D	Drain Curre	nt – Continuous	(Note 1a)	0.6	А
		– Pulsed		2.0	
P _D	Power Dissi	pation for Single Operation	ר (Note 1a)	0.42	W
			(Note 1b)	0.38	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	
Therma	I Charact	eristics			
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)		300	°C/W	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient (Note 1b)		ient (Note 1b)	333	°C/W
Packag	e Marking	g and Ordering I	nformation		·
Device Marking		Device	Reel Size	Tape width	Quantity
.61		FDG361N	7"	8mm	3000 units

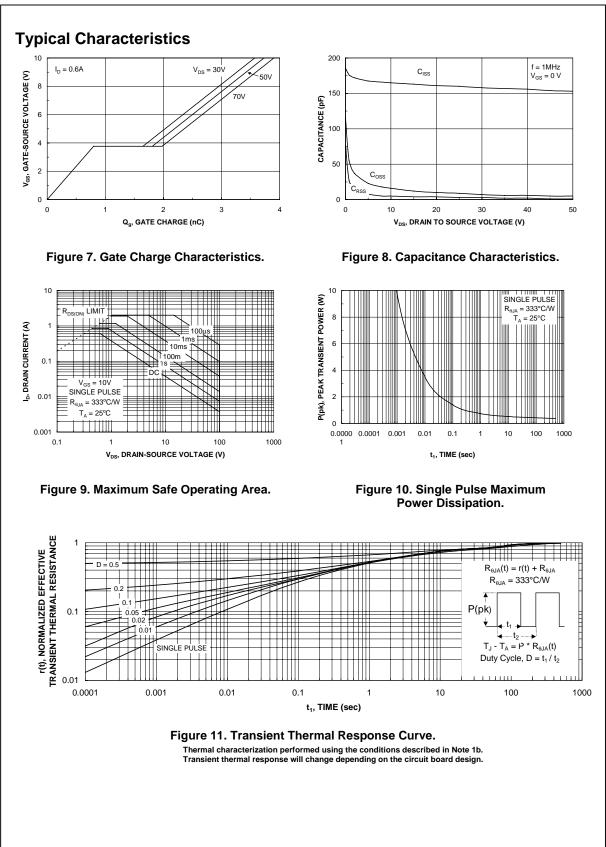
©2001 Fairchild Semiconductor Corporation

FDG361N

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_D = 250 \mu A$	100			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		105		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$			10	μΑ
IGSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)			•	•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2	2.6	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		-5		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			370 396 685	500 550 976	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 10 \text{ V}$	2			Α
g fs	Forward Transconductance	$V_{DS} = 5V,$ $I_{D} = 0.6 A$		3.6		S
Dynamic	Characteristics			•	•	
C _{iss}	Input Capacitance	$V_{DS} = 50 V$, $V_{GS} = 0 V$,		153		pF
Coss	Output Capacitance	f = 1.0 MHz		5		pF
Crss	Reverse Transfer Capacitance			1		pF
Switchir	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 50 V, \qquad I_D = 1 A,$		8	16	ns
tr	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		4	8	ns
t _{d(off)}	Turn–Off Delay Time			11	20	ns
t _f	Turn–Off Fall Time	7		6	12	ns
Qg	Total Gate Charge	$V_{DS} = 50 \text{ V}, \qquad I_D = 0.6 \text{ A},$		3.7	5	nC
Q _{gs}	Gate–Source Charge	V _{GS} = 10 V		0.8		nC
Q _{gd}	Gate–Drain Charge	7		1		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain–Source Diode Forward Current				0.4	Α
V _{SD}	Drain–Source Diode Forward $V_{GS} = 0 V$, $I_S = 0.4 A$ (Note 2) Voltage			0.8	1.2	V

1. $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.


a) 300°C/W when mounted on a 1in² pad of 2 oz copper.


b) 333°C/W when mounted on a minimum pad of 2 oz copper.

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

FDG361N Rev C(W)

FDG361N Rev C(W)

FDG361N Rev C(W)

FDG361N

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®] VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. H3