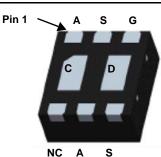


SEMICONDUCTOR®

August 2007

FDFMJ2P023Z

Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode –20V, –2.9A, 112m Ω

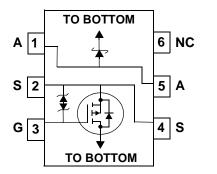

Features

MOSFET

- Max $r_{DS(on)}$ = 112m Ω at V_{GS} = -4.5V, I_D = -2.9A
- Max $r_{DS(on)}$ = 160m Ω at V_{GS} = -2.5V, I_D = -2.4A
- Max $r_{DS(on)}$ = 210m Ω at V_{GS} = -1.8V, I_D = -2.1A
- Max $r_{DS(on)}$ = 300m Ω at V_{GS} = -1.5V, I_D = -1.0A
- Low gate charge, high power and current handline capability
- HBM ESD protection level > 1.5KV typical (Note 3)

Schottky

- V_F < 400mV @ 100mA
- RoHS Compliant



General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features a MOSFET with low on-state resistance and an independently connected low forward voltage schottky diode for minimum conduction losses.

The SC-75 MicroFET package offers exceptional thermal performance for it's physical size and is well suited to linear mode applications.

SC-75 MicroFET

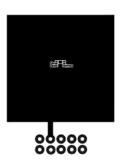
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

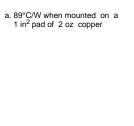
Symbol	Parameter	Ratings	Units	
V _{DS}	Drain to Source Voltage	-20	V	
V _{GS}	Gate to Source Voltage		±8	V
	Drain Current -Continuous (Note 1a) -Pulsed		-2.9	^
I _D			-12	— A
D	Power Dissipation (Note 1a)		1.4	14/
P _D	Power Dissipation	(Note 1b)	0.7	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C
V _{RRM}	Schottky Repetitive Peak Reverse Voltage		30	V
lo	Schottky Average Forward Current		1	Α

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	89	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	182	C/ W

Package Marking and Ordering Information

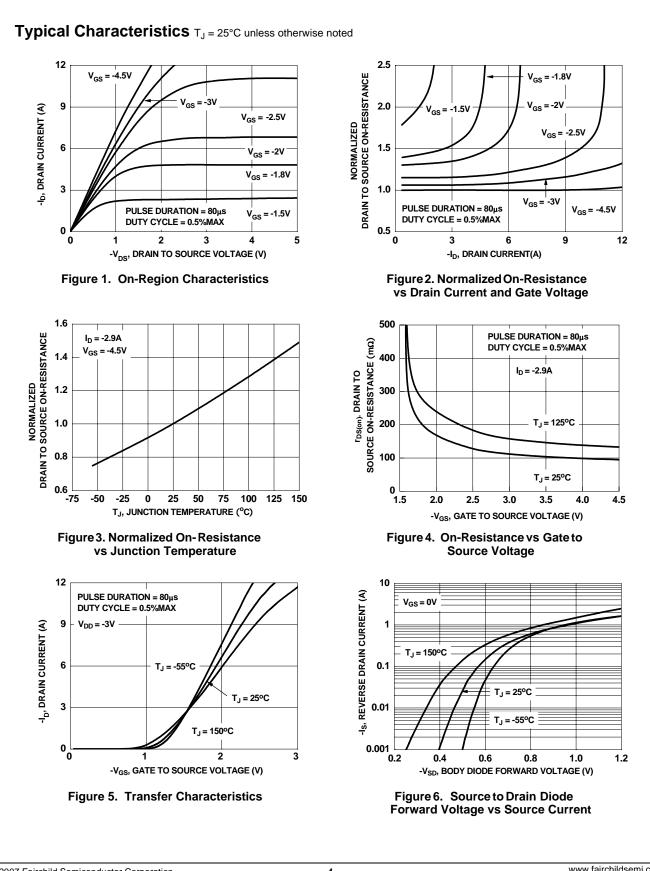

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.P23	FDFMJ2P023Z	SC-75 MicroFET	7"	8 mm	3000 units


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = -250 \mu A, V_{GS} = 0 V$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250\mu A$, referenced to 25°C		-13		mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8V, V_{DS} = 0V$			±10	μA
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.7	-1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250\mu$ A, referenced to 25°C		2.3		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = -4.5V, I_{D} = -2.9A$		93	112	
		$V_{GS} = -2.5V, I_D = -2.4A$		128	160	
		$V_{GS} = -1.8V, I_D = -2.1A$		173	210	mΩ
		$V_{GS} = -1.5V, I_D = -1.0A$		217	300	
		$V_{GS} = -4.5V, I_D = -2.9A, T_J = 125^{\circ}C$		130	160	
9 _{FS}	Forward Transconductance	$V_{DS} = -5V, I_D = -2.9A$		7		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			300	400	pF
C _{oss}	Output Capacitance	$V_{\text{DS}} = -10 \text{V}, \text{ V}_{\text{GS}} = 0 \text{V},$		55	75	pF
C _{rss}	Reverse Transfer Capacitance	-f = 1MHz		45	70	pF
	g Characteristics					
t _{d(on)}	Turn-On Delay Time			5	10	ns
t _r	Rise Time	$V_{DD} = -10V, I_D = -2.9A$		4	10	ns
t _{d(off)}	Turn-Off Delay Time	$-V_{GS} = -4.5V, R_{GEN} = 6\Omega$		23	37	ns
t _f	Fall Time	-		12	22	ns
Q _g	Total Gate Charge			4.6	6.5	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = -5V, I_D = -2.9A$		0.6		nC
Q _{gd}	Gate to Drain "Miller" Charge	$-V_{GS} = -4.5V$		1.0		nC
	urce Diode Characteristics					
Drain-So	Maximum Continuous Drain-Source Diode Forward Current				-1.1	А
	Maximum Continuous Drain-Source Diod			0.0		V
ls		$V_{GS} = 0V, I_{S} = -1.1A$		-0.9	-1.2	
	Maximum Continuous Drain-Source Diod Source to Drain Diode Forward Voltage Reverse Recovery Time	$V_{GS} = 0V, I_S = -1.1A$ $I_F = -2.9A, di/dt = 100A/\mu s$		_0.9 28	45	ns

Symbol	Parameter	Test Co	Test Conditions		Тур	Max	Units		
Schottky Diode Characteristics									
V _R	Reverse Voltage	I _R = 100mA	$T_J = 25^{\circ}C$	30			V		
			$T_J = 25^{\circ}C$		0.39	2	μA		
I _R R	Reverse Leakage	V _R = 10V	$T_J = 85^{\circ}C$		0.04	0.2	mA		
			$T_J = 125^{\circ}C$		0.4	2	mA		
I _R F	Reverse Leakage	V _R = 20V	$T_J = 25^{\circ}C$		0.86	4	μA		
			$T_J = 85^{\circ}C$		0.06	0.3	mA		
			T _J = 125°C		0.62	3	mA		
			$T_J = 25^{\circ}C$		380	400	mV		
V _F	Forward Voltage	I _F = 100mA	$T_J = 85^{\circ}C$		300	350	mV		
			T _J = 125°C		250	300	mV		
			$T_J = 25^{\circ}C$		570	615	mV		
V _F	Forward Voltage	I _F = 1A	$T_J = 85^{\circ}C$		540	590	mV		
			T _J = 125°C		530	580	mV		

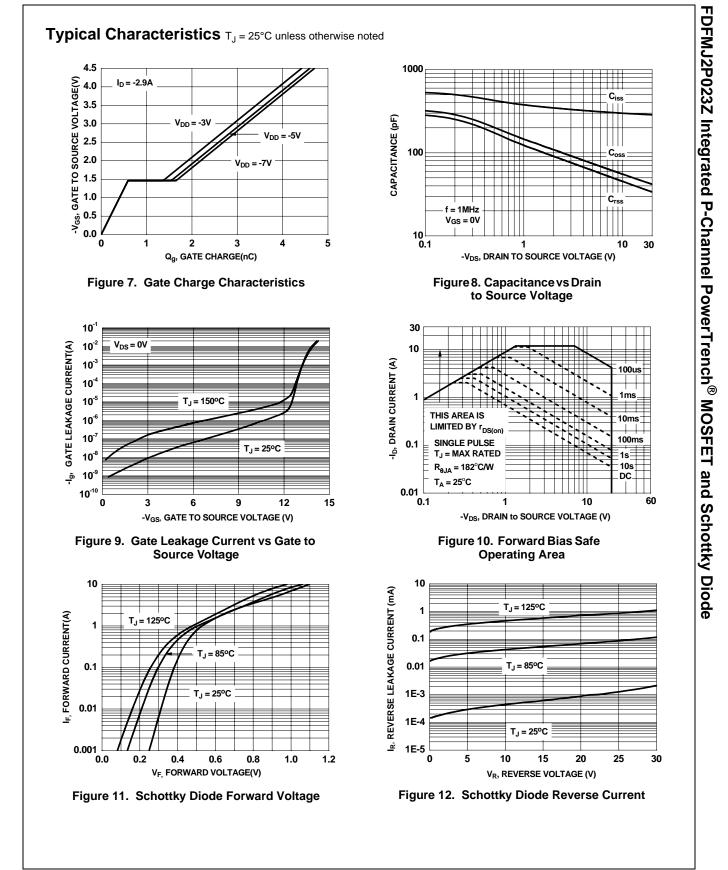
Notes:

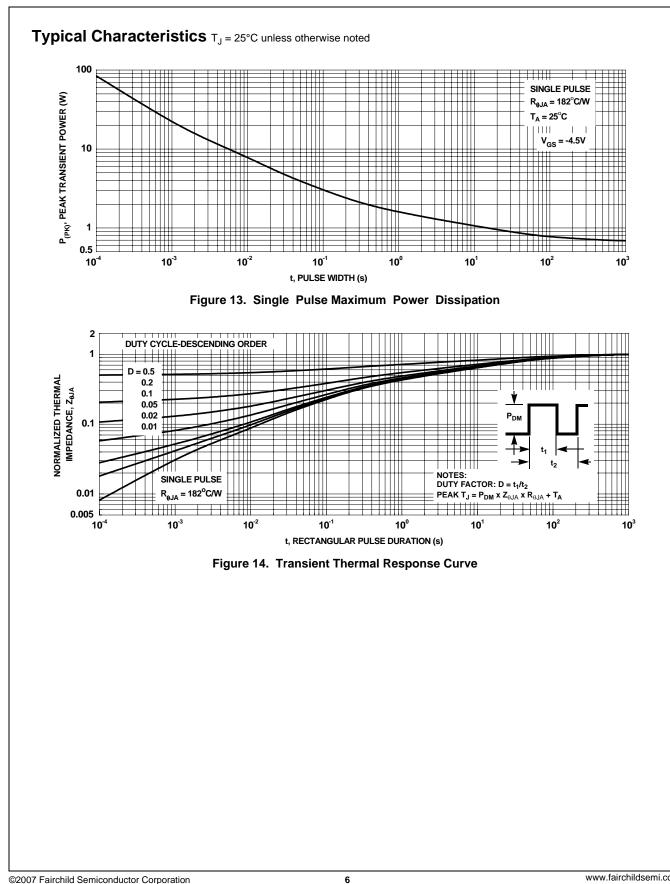
1. R_{0JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

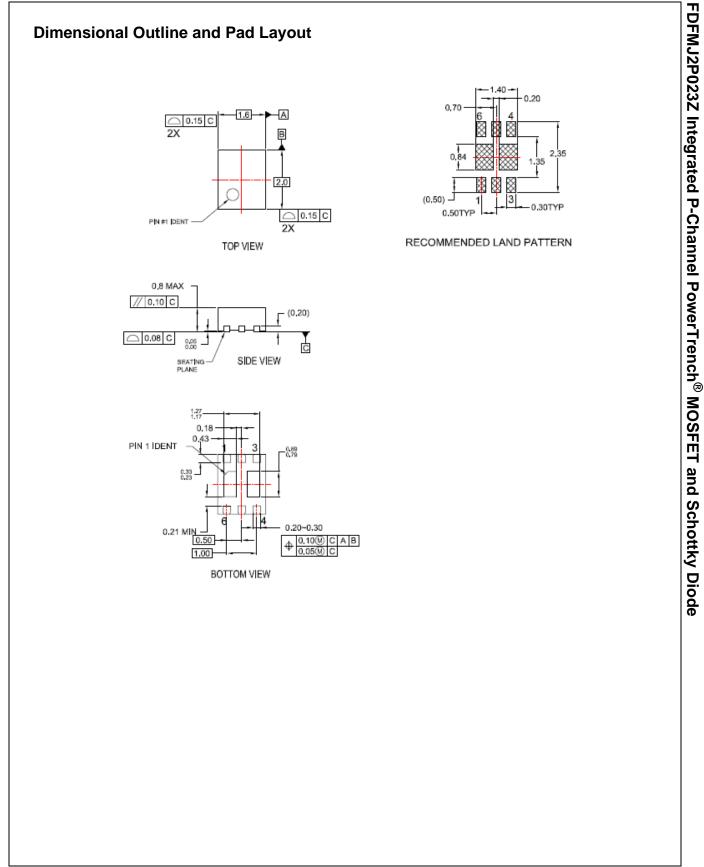

b.182°C/V minimur

b.182°C/W when mounted on a minimum pad of 2 oz copper

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.


3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.




©2007 Fairchild Semiconductor Corporation FDFM2P023Z Rev.B

4

©2007 Fairchild Semiconductor Corporation FDFM2P023Z Rev.B www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now[™] CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK**[®] F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFFT® Global Power ResourceSM Green FPS™ Green FPS[™] e-Series[™] GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM[™] **OPTOLOGIC[®] OPTOPLANAR[®]** ® PDP-SPM™ Power220[®]

Power247® **POWEREDGE[®]** Power-SPM[™] PowerTrench[®] Programmable Active Droop™ **QFET[®]** QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SuperSOTTM-8 SyncFETTM The Power Franchise[®] **p** franchise TinyBoostTM TinyBoostTM TinyBuckTM TinyLogic[®] TINYOPTOTM TinyPowerTM TinyPWMTM TinyPWMTM TinyWireTM µSerDesTM UHC[®] UniFETTM VCXTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Definition of Terms Datasheet Identification **Product Status** Definition This datasheet contains the design specifications for product Advance Information Formative or In Design development. Specifications may change in any manner without notice. This datasheet contains preliminary data; supplementary data will be pub-Preliminary First Production lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves No Identification Needed **Full Production** the right to make changes at any time without notice to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference infor-Obsolete Not In Production mation only.

Rev. I31