

January 2013

FDFMA3P029Z

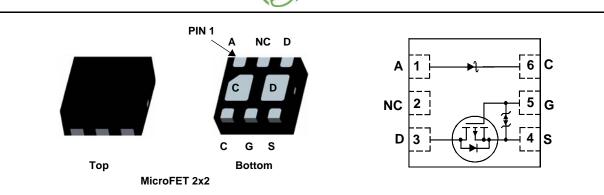
Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

–30 V, –3.3 A, 87 mΩ

Features

MOSFET

- Max $r_{DS(on)}$ = 87 m Ω at V_{GS} = -10 V, I_D = -3.3 A
- Max $r_{DS(on)}$ = 152 m Ω at V_{GS} = -4.5 V, I_D = -2.3 A
- HBM ESD protection level > 2 KV typical (Note 3)


Schottky

- V_F < 0.37 V @ 500 mA
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- RoHS Compliant

General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features a MOSFET with very low on-state resistance and an independently connected low forward voltage schottky diode allows for minimum conduction losses.

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DS}	Drain to Source Voltage	-30	V	
V _{GS}	Gate to Source Voltage		±25	V
I _D	Drain Current -Continuous (Note 1a) -Pulsed		-3.3	_
			-15	Α
P _D	Power Dissipation (Note 1a)		1.4	w
		(Note 1b)	0.7	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C
V _{RRM}	Schottky Repetitive Peak Reverse Voltage		20	V
lo	Schottky Average Forward Current		2	Α

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	86	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	173	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1c)	86	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1d)	173	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
3P2	FDFMA3P029Z	MicroFET 2X2	7 "	8 mm	3000 units

Symbol	Parameter	Test Co	onditions	Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _C	_{is} = 0 V	-30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C			-22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 V, V_{C}$	_{3S} = 0 V			-1	μA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±25 V, V _D	_S = 0 V			±10	μA
On Chara	cteristics		•				1
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D =$	–250 μA	-1	-1.9	-3	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage				F		
ΔT_J	Temperature Coefficient	_	erenced to 25 °C		5		mV/°C
		V_{GS} = -10 V, I _D			69	87	
r _{DS(on)}	Static Drain to Source On-Resistance	$V_{GS} = -4.5 \text{ V}, \text{ I}_{E}$			108	152	mΩ
-D3(01)	Static Drain to Source On-Nesistance	$V_{GS} = -10 \text{ V}, I_D = -3.3 \text{ A}, T_J = 125 \text{ °C}$			97	122	11152
9 _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} =$	–3.3 A		6		S
R _g	Gate Resistance				12		Ω
	Characteristics	L L	L. L		1		
	Input Capacitance				324	435	pF
C _{oss}	Output Capacitance	V _{DS} = -15 V, V _G	_S = 0 V,		59	80	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz	-		53	80	pF
							F.
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time	V _{DD} = -15 V, I _D =	334		5.2	11	ns
t _r	Rise Time	$-V_{GS} = -10 V, R_{G}$			3	10	ns
t _{d(off)}	Turn-Off Delay Time		-		17	31	ns
t _f	Fall Time				11	25	ns
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V \text{ to } -10$			7.2	10	nC
	Total Gate Charge	$V_{GS} = 0 V \text{ to } -5 V$	V V _{DD} = -15 V, I _D = -3.3 A		4.1	6	. 0
Q _{gs}	Gate to Source Gate Charge	$I_{\rm D} = -3.3 \rm{A}$			1.0		nC
Q _{gd}	Gate to Drain "Miller" Charge				1.9		nC
	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -$	3.3 A (Note 2)		-0.94	-1.3	V
t _{rr}	Reverse Recovery Time	— I _F = -3.3 A, di/dt	= 100 A/µs		20	32	ns
Q _{rr}	Reverse Recovery Charge				10	18	nC
Schottky	Diode Characteristics						
V _R	Reverse Voltage	I _R = 1 mA	T _J = 25 °C	20			V
<u>—</u>	Reverse Leakage	V _R = 20 V	T _J = 25 °C		30	300	μΑ
I _R		• R = 20 V	T _J = 125 °C		10	45	mA
		I _F = 500 mA	T _J = 25 °C		0.32	0.37	-
V _F	Forward Voltage	···	T _J = 125 °C		0.21	0.26	v
r		I _F = 1 A	$T_J = 25 \text{ °C}$		0.37	0.435	
		$T_{\rm J} = 125 {\rm °C}$			0.28	0.33	

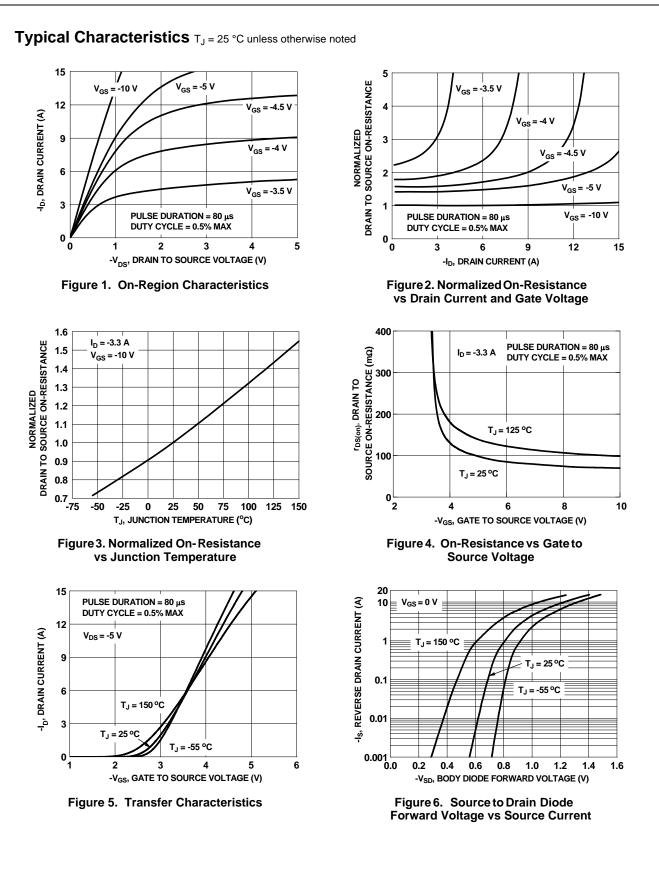
FDFMA3P029Z Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

Notes:

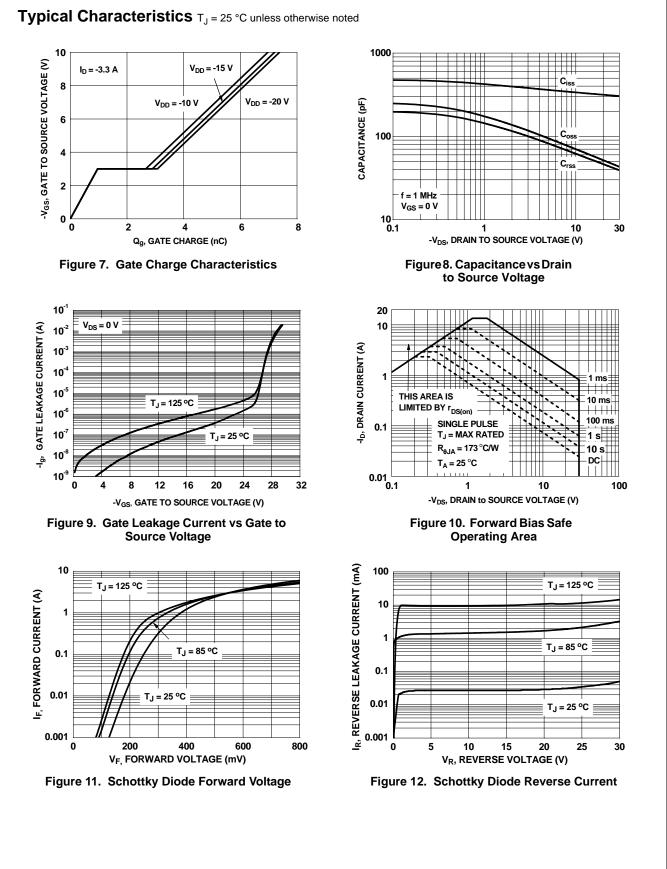
1: R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.

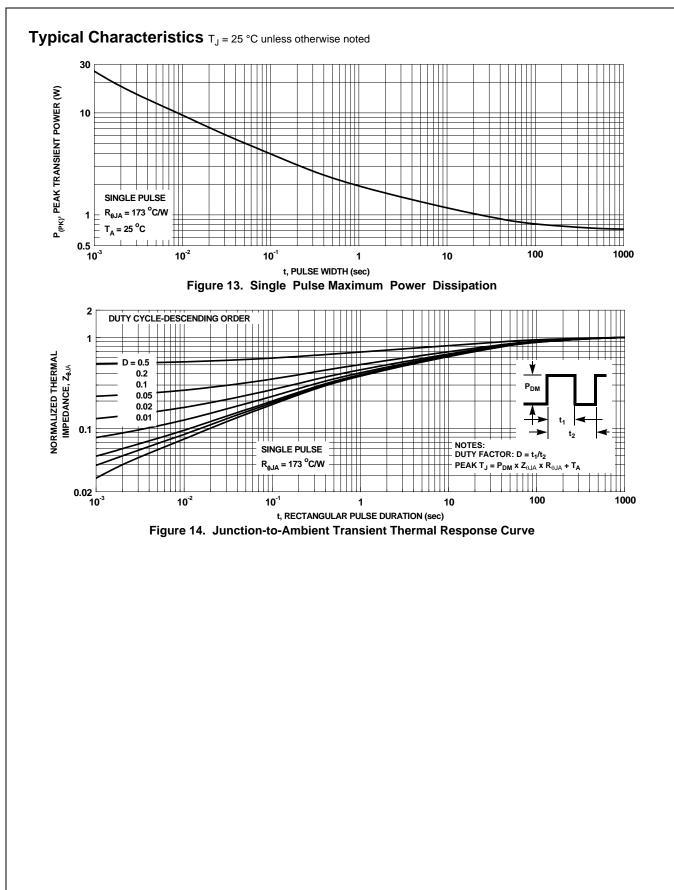
(a) MOSFET R_{0JA} = 86 °C/W when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB

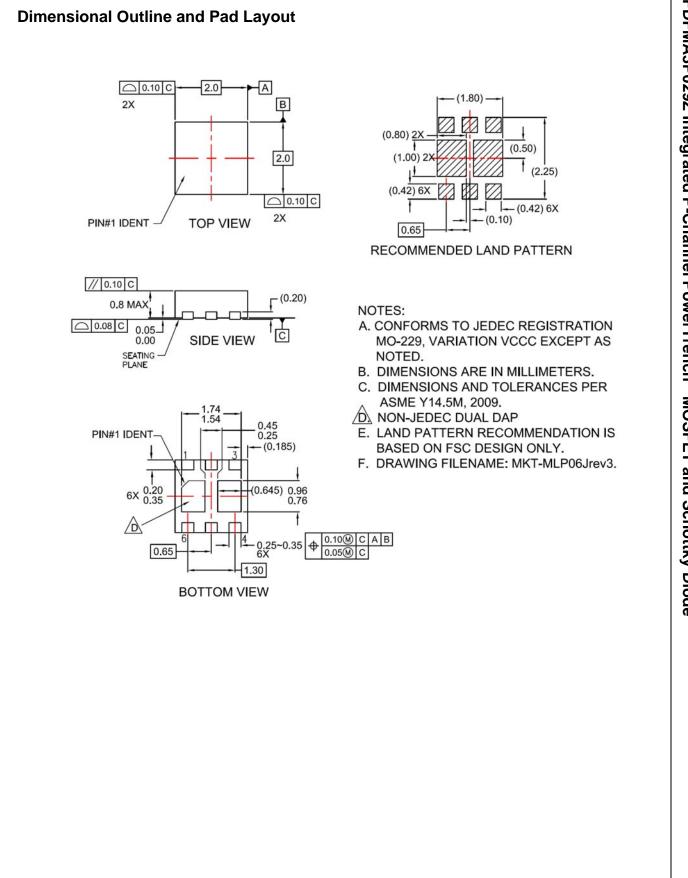
(b) MOSFET R_{0JA} = 173 °C/W when mounted on a minimum pad of 2 oz copper


(c) Schottky $R_{\theta JA}$ = 86 °C/W when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB.

(d) Schottky $R_{\theta JA}$ = 173 °C/W when mounted on a minimum pad of 2 oz copper.


2: Pulse Test : Pulse Width < 300 μ s, Duty Cycle < 2.0% 3: The diode connected between the gate and source serves only protection against ESD. No gate overvoltage rating is implied.


©2013 Fairchild Semiconductor Corporation FDFMA3P029Z Rev.C


www.fairchildsemi.com

FDFMA3P029Z Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

©2013 Fairchild Semiconductor Corporation FDFMA3P029Z Rev.C www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

intended to be an exhaustive list of	f all such trademarks.		
2Cool™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
AccuPower™ AX-CAP™* BitSiC [®] Build it Now™ CorePLUS™	FRFET® Global Power Resource SM Green Bridge [™] Green FPS [™] Green FPS [™] e-Series [™]	PowerXS™ Programmable Active Droop™ QFET [®] QS™ Quiet Series™	the wer franchise TinyBoost™ TinyBuck™
CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED [®] Dual Cool™ EcoSPARK [®]	Gmax [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] Marking Small Speakers Sound Louder and Better [™] MegaBuck [™]	RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™	TinyCalc [™] TinyLogic [®] TINYOPTO [™] TinyPower [™] TinyPWM [™] TinyWire [™] TranSiC [®] TriFault Detect [™]
EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] FAST [®] FastvCore TM FETBench TM FlashWriter [®] * FPS TM	MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ Motion-SPM™ Motion-SPM™ mWSaver™ OptoHiT™ OPTOLOGIC [®] OPTOPLANAR®	Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SupreMOS® SyncFET™ Sync-Lock™ ESYSTEM®*	TRUECURRENT®* uSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VotagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		