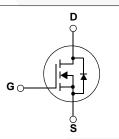
FAIRCHILD

SEMICONDUCTOR

FCPF380N60E_F152 N-Channel SuperFET[®] II MOSFET 600 V, 10.2 A, 380 mΩ

Features

- 650 V @T_J = 150°C
- Max. R_{DS(on)} = 380 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 34 nC)
- Low Effective Output Capacitance (Typ. C_{oss}.eff = 97 pF)
- 100% Avalanche Tested


Aplications

- LCD / LED / PDP TV Lighting
- Solar Inverter
- AC-DC Power Supply

Description

SuperFET[®]II MOSFET is Fairchild Semiconductor[®], s first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET[®]II MOSFET is suitable for various AC/DC power conversion for system miniaturization and higher efficiency.

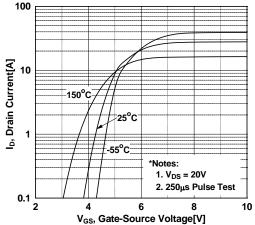
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

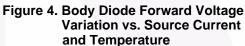
Symbol	Parameter			FCPF380N60E_F152	Unit	
V _{DSS}	Drain to Source Voltage			600	V	
V _{GSS}		- DC	- DC		V	
	Gate to Source Voltage	- AC	(f > 1Hz)	±30	V	
I _D C		-Continuous (T _C = 25°C)	-Continuous (T _C = 25°C)			
	Drain Current	-Continuous ($T_c = 100^{\circ}C$)		6.4*	— A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	30.6*	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		211.6	mJ		
I _{AR}	Avalanche Current		(Note 1)	2.3	Α	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	1.06	mJ	
	Peak Diode Recovery dv/dt (Note 3)		(Note 3)	20	1//20	
dv/dt MOSFET dv/dt				100	V/ns	
P _D	Device Dissisction	$(T_{C} = 25^{\circ}C)$		31	W	
	Power Dissipation	- Derate above 25°C		0.25	W/ºC	
T _J , T _{STG}	Operating and Storage Temp	erature Range		-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300	°C		

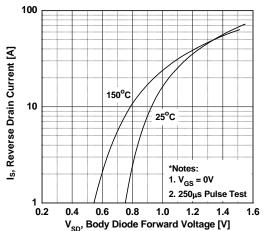
*Drain current limited by maximum junction temperature

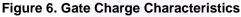

Thermal Characteristics

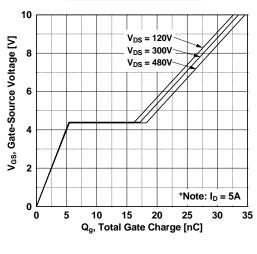
Symbol	Parameter	FCPF380N60E_F152	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	4	
$R_{\theta CS}$	Thermal Resistance, Case to Heat Sink (Typical)	0.5	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	62.5	

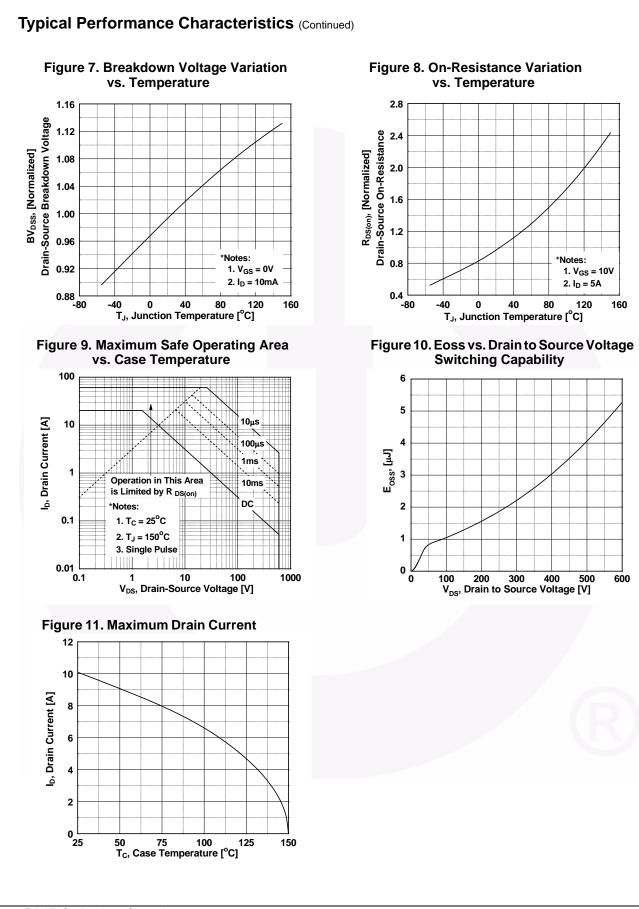

Device Marking FCPF380N60E		Device FCPF380N60E_F152	Package TO-220F	Eco Status Green ⊘	Packaging Type Tube			Quantity 50	
For Fairchild's d	efinition o	f "green" Eco Status, please visit:	http://www.fairc	hildsemi.com/company/g	green/ro	hs_green.	<u>html</u> .		
Electrica	I Cha	racteristics T _C = 25°C	unless otherwis	se noted					
Symbol	 	Parameter		Test Conditions		Min.	Тур.	Max.	Unit
Off Charac	teristi	 CS			I			I	
			Vcs =	0V, I _D = 10mA, T _J = 25°	C.	600	-	_	V
BV _{DSS}	Drain f	to Source Breakdown Voltage		$0V, I_D = 10mA, T_J = 150$		650	-	-	V
ΔBV _{DSS} ΔT.I	Break	down Voltage Temperature cient		000, 10 = 1000, 10 = 100		-	0.67	-	V/°C
BV _{DS}		Source Avalanche Breakdown	V _{GS} =	0V, I _D = 10A		-	700	-	V
	Zaro (Sata Valtaga Drain Current	V _{DS} =	480V, V _{GS} = 0V		-	-	10	
DSS	Zeru e	Sate Voltage Drain Current	$V_{DS} =$	480V, T _C = 125 ^o C		-	-	10	μA
I _{GSS}	Gate t	o Body Leakage Current	V _{GS} =	$\pm 20V, V_{DS} = 0V$		-	-	±100	nA
On Charac	teristi	cs							
V _{GS(th)}	Gate 7	Threshold Voltage	V _{GS} =	V _{DS} , I _D = 250μA		2.5	-	3.5	V
R _{DS(on)}		Drain to Source On Resistanc		$10V, I_D = 5A$		-	0.32	0.38	Ω
9FS	Forwa	rd Transconductance		$20V, I_D = 5A$		-	10	-	S
Dynamic C	harac	teristics			I				1
C _{iss}	-	Capacitance		$V_{DS} = 25V, V_{GS} = 0V$		-	1330	1770	pF
C _{oss}		t Capacitance				-	945	1260	pF
C _{rss}		se Transfer Capacitance	f = 1M	Hz		-	60	90	pF
C _{oss}		t Capacitance	V _{DS} =	380V, V _{GS} = 0V, f = 1MH	Hz	-	25	-	pF
C _{oss} eff.	Effecti	ve Output Capacitance		$0V \text{ to } 480V, V_{GS} = 0V$		-	97	-	pF
Q _{g(tot)}		Gate Charge at 10V		V _{DS} = 380V, I _D = 5A		-	34	45	nC
Q _{gs}	Gate to	o Source Gate Charge				-	5.3	-	nC
Q _{gd}	Gate to	o Drain "Miller" Charge	V _{GS} =		(Note 4)	-	13	-	nC
ESR	Equiva	alent Series Resistance	f = 1M		1010 4)	-	6	-	Ω
Switching									
	-	Dn Delay Time				-	17	44	ns
t _{d(on)} t _r		On Rise Time		$V_{DD} = 380V, I_D = 5A$ $V_{GS} = 10V, R_G = 4.7\Omega$		_	9	28	ns
		Off Delay Time				-	64	138	ns
t _{d(off)} t _f		Off Fall Time		((Note 4)	-	10	30	ns
		ode Characteristics			1010 17				
		um Continuous Drain to Source	o Diodo Forwa	rd Curront		-	·	10.2	A
l _S		um Pulsed Drain to Source Di				-	-	30.6	A
I _{SM} V _{SD}		o Source Diode Forward Volta		0V, I _{SD} = 5A		_	_	1.2	V
t _{rr}		se Recovery Time		$0V, I_{SD} = 5A$		-	240	-	ns
Q _{rr}		se Recovery Charge		= 100A/µs		-	3	-	μC

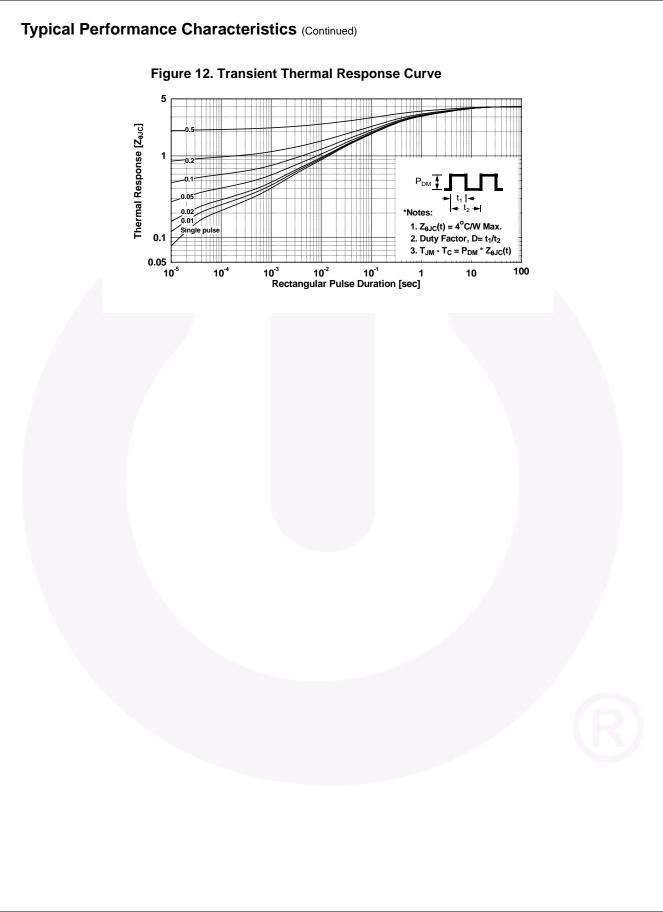

2

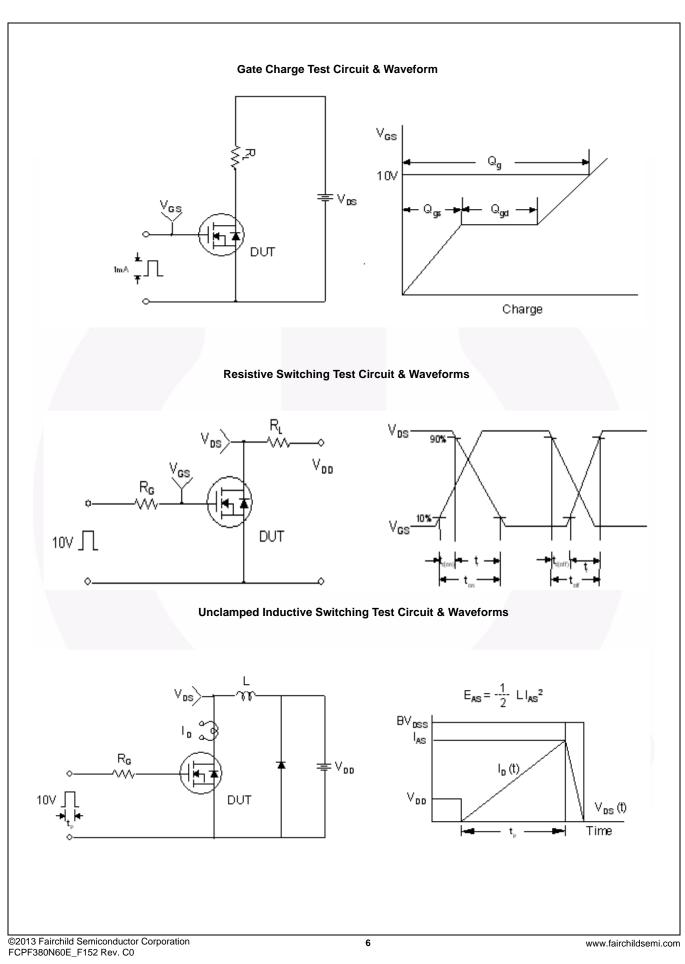

FCPF380N60E_F152 — N-Channel MOSFET



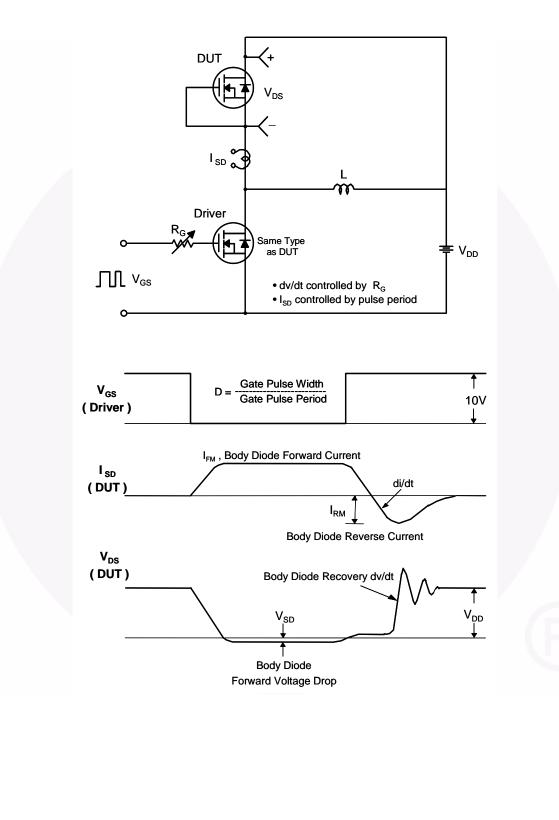

Figure 2. Transfer Characteristics







©2013 Fairchild Semiconductor Corporation FCPF380N60E_F152 Rev. C0



FCPF380N60E_F152 — N-Channel MOSFET

FCPF380N60E_F152 — N-Channel MOSFET

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not he an exhaustive list of all such trademarks

intended to be an exhaustive list of	all such trademarks.		
2Cool™	FPS™		Sync-Lock™
AccuPower TM AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM <i>CROSSVOLT</i> TM CTL TM Current Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM $\mathbf{F}_{\mathbf{F}}^{\mathbf{G}}$ Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Ouiet Series TM FACT [®] FAST [®] FastvCore TM FETBench TM	F-PFS™ FRFET® Global Power Resource SM Green Bridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Loud and Better™ MigroPALANAR™ MicroPat™ MicroPak™ MicroPak™ MicroPakZ™ MicroPakZ™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®	PowerTrench [®] PowerXS [™] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] Prover Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -8 SuperMOS [®] SyncFET [™]	$\label{eq:system} \begin{split} & \widehat{\mathbb{G}}_{General}^{\otimes*} \\ & \widehat{\mathbb{G}}_{General}^{\operatorname{TinyBoost^{TM}}} \\ & \operatorname{TinyBoost^{TM}} \\ & \operatorname{TinyDogic}^{\otimes} \\ & \operatorname{TinyOptOTM} \\ & \operatorname{TinyPower^{TM}} \\ & \operatorname{TinyPWM^{TM}} \\ \\ & \operatorname{TinyPWM^{TM}} \\ & \operatorname{TinyPWM^{TM}} \\ & \operatorname{TinyPWM^{TM}} \\ & \operatorname{TinyPWM^{TM}} \\ \\ & \operatorname{TinyPWM^{TM}} \\ & \operatorname{TinyPWM^{TM}} \\ \\ & \operatorname{TinyPWM^{TM}} \\ \\ & \operatorname{TinyPWM^{TM}} \\ \\ & \operatorname{TinyPWM^{TM}} \\ & \operatorname{TinyPWM^{TM}} \\ \\ & \operatorname{TinyPWM^{TM}} \\ \\ & \operatorname{TinyPWM^{TM}} \\ \\ & \operatorname{TinPWM^{TM}} \\ \\ & \operatorname{TinPWM^{TM}} \\ \\ & TinPWM^{TM$

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev