June 2011

SEMICONDUCTOR

FAN7317 LCD Backlight Inverter Drive IC

Features

- High-Efficiency Single-Stage Power Conversion
- Wide Input Voltage Range: 6V to 24V
- Backlight Lamp Ballast and Soft Dimming
- Minimal Required External Components
- Precision Voltage Reference Trimmed to 2%
- ZVS Full-Bridge Topology
- Soft-Start
- PWM Control at Fixed Frequency
- Burst Dimming Function
- Programmable Striking Frequency
- Open-Lamp Protection
- Open-Lamp Regulation
- Arc Protection
- Short-Lamp Protection
- CMP-High Protection
- High-FB Protection
- Thermal Shutdown
- 20-Pin SOIC

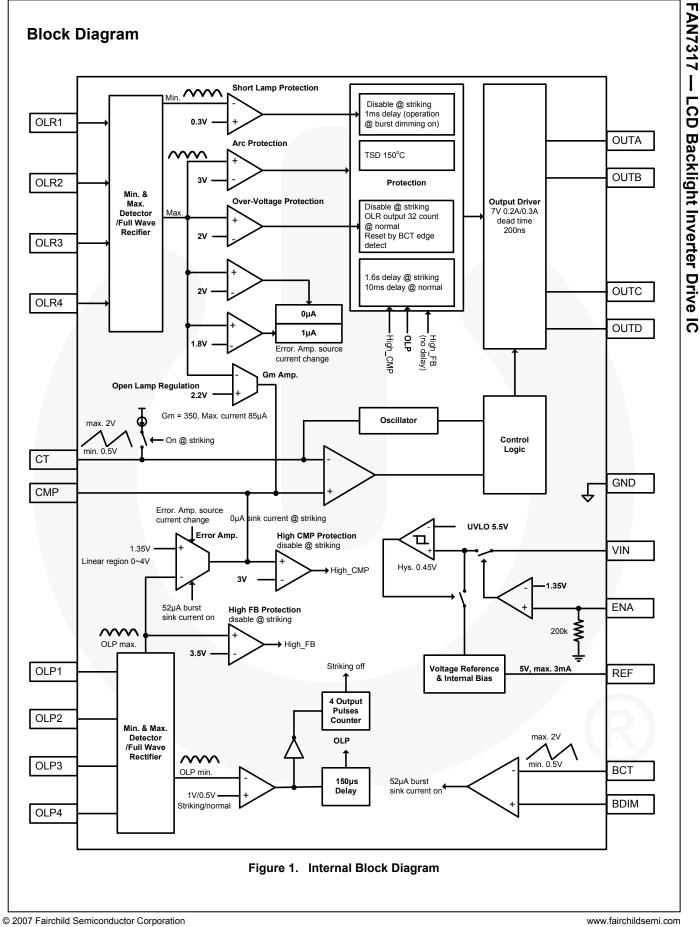
Applications

- LCD TV
- LCD Monitor

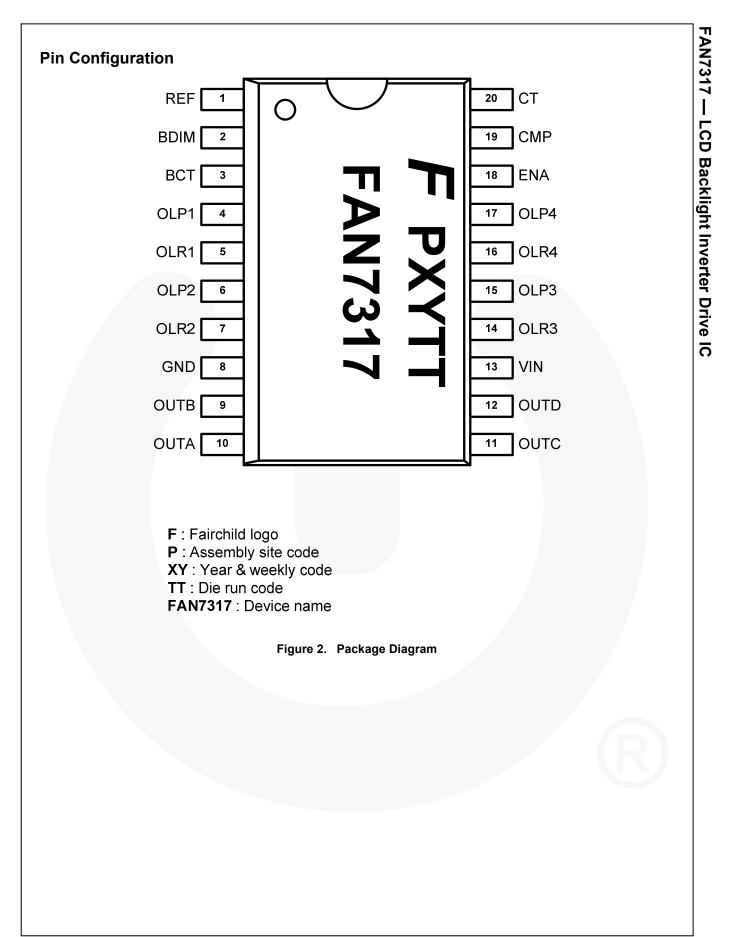
Ordering Information

The FAN7317 is a LCD backlight inverter drive IC that controls P-N full-bridge topology by using the new proprietary phase-shift method.

The FAN7317 provides a low-cost solution and reduces external components by integrating full wave rectifiers for open-lamp protection and regulation. The operating voltage range of the FAN7317 is wide, so an external regulator isn't necessary to supply the voltage to the IC.


The FAN7317 provides various protections, such as open-lamp regulation, open-lamp protection, arc protection, short-lamp protection, CMP-high protection, and FB-high protection, to increase the system reliability. The FAN7317 provides burst dimming function and analog dimming is possible, in a narrow range, by adding some external components.

The FAN7317 is available in a 20-SOIC package.



Part Number	Package	Operating Temperature	Packing Method
FAN7317M	20-SOIC	-25 to +85°C	RAIL
FAN7317MX	20-SOIC	-25 to +85°C	TAPE & REEL

All packages are lead free per JEDEC: J-STD-020B standard.

FAN7317 • 1.0.3

Pin Definitions

Pin #	Name	Description
1	REF	This pin is 5V reference output. Typically, resistors are connected to this pin from CT pin and BCT pin.
2	BDIM	This pin is the input for burst dimming. The voltage range of 0.5 to 2V at this pin controls burst mode duty cycle from 0% to 100%.
3	BCT	This pin is for programming the frequency of the burst dimming. Typically, a capacitor is connected to this pin from ground and a resistor is connected to this pin from the REF pin.
4	OLP1	This pin is for open-lamp protection and feedback control of lamp currents. It has the same functions as other OLP pins and is connected to the full-wave rectifier internally. In striking mode, if the minimum of rectified OLP inputs is less than 1V for 1.6s; or in normal mode, if the minimum of rectified OLP inputs is less than 0.5V for 10ms; the IC shuts down to protect the system in open lamp condition. The maximum of rectified OLP inputs is inputted to the negative of the error amplifier for feedback control of lamp current.
5	OLR1	This pin is for open-lamp regulation. It has the same functions as other OLR pins and is connected to the full-wave rectifier internally. When the maximum of rectified OLR inputs is between 1.8V and 2V, the error amplifier output current is limited to 1 μ A; and when the maximum of rectified OLR inputs reaches 2V, the error amplifier output current is 0A and its output voltage maintains constant. The maximum of rectified OLR inputs is inputted to the negative of another error amplifier for feedback control of lamp voltage. When the maximum of rectified OLR inputs is more than 2.2V, another error amplifier for OLR is operating and lamp voltage is regulated.
6	OLP2	This pin is for open-lamp protection and feedback control of lamp currents. Its functions are the same as the OLP1 pin.
7	OLR2	This pin is for open-lamp regulation. Its functions are the same as the OLR1 pin.
8	GND	This pin is the ground.
9	OUTB	This pin is NMOS gate-drive output.
10	OUTA	This pin is PMOS gate-drive output.
11	OUTC	This pin is PMOS gate-drive output.
12	OUTD	This pin is NMOS gate-drive output.
13	VIN	This pin is the supply voltage of the IC.
14	OLR3	This pin is for open-lamp regulation. Its functions are the same as the OLR1 pin.
15	OLP3	This pin is for open-lamp protection and feedback control of lamp currents. Its functions are the same as the OLP1 pin.
16	OLR4	This pin is for open-lamp regulation. Its functions are the same as the OLR1 pin.
17	OLP4	This pin is for open-lamp protection and feedback control of lamp currents. Its functions are the same as the OLP1 pin.
18	ENA	This pin is for turning on/off the IC.
19	CMP	Error amplifier output. Typically, a compensation capacitor is connected to this pin from the ground.
20	СТ	This pin is for programming the switching frequency. Typically, a capacitor is connected to this pin from ground and a resistor is connected to this pin from the REF pin.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	IC Supply Voltage	6	24	V
T _A	Operating Temperature Range	-25	+85	°C
TJ	Operating Junction Temperature		+150	°C
T _{STG}	Storage Temperature Range	-65	+150	°C
θ_{JA}	Thermal Resistance Junction-Air ^(1,2)		90	°C/W
PD	Power Dissipation		1.4	W

Notes:

1. Thermal resistance test board. Size: 76.2mm x 114.3mm x 1.6mm (1S0P); JEDEC standard: JESD51-2, JESD51-3.

2. Assume no ambient airflow.

Pin Breakdown Voltage

Pin #	Name	Value	Unit	Pin #	Name	Value	Unit
1	REF	7		11	OUTC	24	
2	BDIM	7		12	OUTD	7	
3	BCT	7		13	VIN	24	
4	OLP1	±7		14	OLR3	±7	
5	OLR1	±7	V	15	OLP3	±7	v
6	OLP2	±7	v	16	OLR4	±7	V V
7	OLR2	±7		17	OLP4	±7	
8	GND	7		18	ENA	7	
9	OUTB	7]	19	CMP	7	
10	OUTA	24		20	СТ	7	

Electrical Characteristics

For typical values, $T_A = 25^{\circ}C$, $V_{IN} = 15V$, and $-25^{\circ}C \le T_A \le 85^{\circ}C$, unless otherwise specified. Specifications to $-25^{\circ}C \sim 85^{\circ}C$ are guaranteed by design based on final characterization results.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
Under-Volta	age Lockout Section (UVLO)						
V _{th}	Start Threshold Voltage		4.9	5.2	5.5	V	
V _{thhys}	Start Threshold Voltage Hysteresis		0.20	0.45	0.60	V	
l _{st}	Start-up Current	V _{IN} = 4.5V		70	100	μA	
l _{op}	Operating Supply Current	V _{IN} = 15V, Not switching		2.0	3.5	mA	
ON/OFF Se	ction						
Von	On State Input Voltage		2		5	V	
V _{off}	Off Stage Input Voltage				0.7	V	
I _{sb}	Stand-by Current	V _{IN} = 15V, ENA = Low		120	170	μA	
Rena	Pull-down Resistor		130	200	270	kΩ	
Reference S	Section (Recommend 1µF X7R Capacit	tor)					
V_5	5V Regulation Voltage	$0 \leq I_5 \leq 3mA$	4.9	5.0	5.1	V	
V _{5line}	5V Line Regulation	6 ((VIN (((24V			50	mV	
V5load	5V Load Regulation	I ₅ = 3mA			50	mV	
Oscillator S	Section (Main)						
		$T_{A} = 25^{\circ}C, CT = 220pF,$ RT = 100k Ω	93.9	97.0	100.5	kU-	
f _{osc}	Oscillation Frequency	CT = 220pF, RT = 100kΩ	93	97	101	kHz	
f _{str}	Oscillator Frequency in Striking Mode	$T_{A} = 25^{\circ}C, CT = 220pF,$ RT = 100k Ω	120	124	129	— kHz	
∙str	Oscillator Frequency in Stirking Mode	CT = 220pF, RT = 100kΩ	119	124	129		
Ictdcs	CT Discharge Current	Striking	0.99	1.14	1.29	mA	
I _{ctdc}	CT Discharge Current	Normal	740	840	940	μA	
Ictcs	CT Charge Current	Striking	-15	-12	-9	μA	
V _{cth}	CT High Voltage			2		V	
V _{ctl}	CT Low Voltage			0.4		V	
Oscillator S	Section (Burst)						
f _{oscb}	Burst Oscillation Frequency	$T_{A} = 25^{\circ}C, BCT = 4.7nF, BRT = 1.4M\Omega$	303	314	326	Hz	
		BCT = 4.7nF, BRT = 1.4MΩ	302	314	326	ΠΖ	
I _{bctdc}	BCT Discharge Current		14	26	38	μA	
V _{bcth}	BCT High Voltage			2		V	
V _{bctl}	BCT Low Voltage			0.5		V	

Electrical Characteristics (Continued)

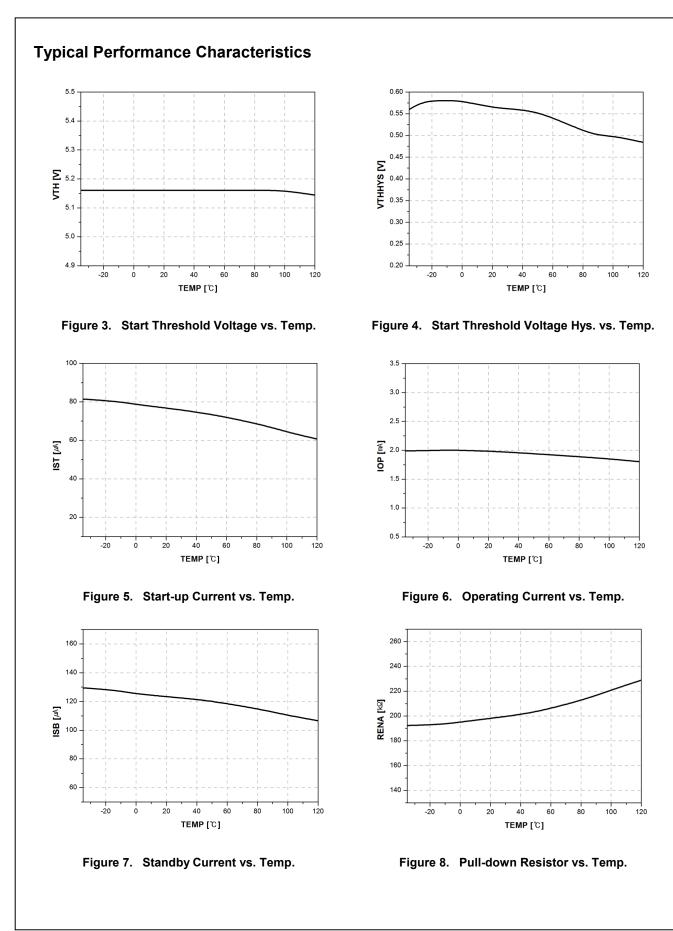
For typical values, $T_A = 25^{\circ}$ C, $V_{IN} = 15$ V, and -25° C $\leq T_A \leq 85^{\circ}$ C, unless otherwise specified. Specifications to -25° C $\sim 85^{\circ}$ C are guaranteed by design based on final characterization results.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Error Ampli	fier Section					
Av	Open-loop Gain ⁽³⁾			37		dB
Gm	Error Amplifier Trans-conductance		20	40	60	µmho
I _{sin}	Output Sink Current	OLP = 2.25V	-50	-35	-20	μA
l _{sur}	Output Source Current	OLP = 0.8V	12	22	32	μA
I _{bsin}	Burst CMP Sink Current		38	52	66	μA
N/	1.25)/ Degulation Voltage	T _A = 25°C	1.275	1.350	1.421	v
V _{135p}	1.35V Regulation Voltage		1.255	1.350	1.444	v
I _{olpi}	OLP Input Current	OLP = 2V	-1	0	1	μA
l _{olpo}	OLP Output Current	OLP = -2V	-30	-20	-10	μA
V _{olpr}	OLP Input Voltage Range ⁽³⁾		-4		4	V
Open-Lamp	Regulation Section			•		
I _{olr1}	Error Amplifier Source Current for	Striking, OLR = V _{olr1} +0.05	-2.0	-1.0	-0.1	μA
I _{olr2}	Open-Lamp Regulation	OLR = 2.1V		0		μA
V _{olr1}	Open-Lamp Regulation Voltage 1	Striking	1.65	1.80	1.95	V
V _{olr2}	Open-Lamp Regulation Voltage 2	Striking	1.95	2.05	2.15	V
V _{olr3}	Open-Lamp Regulation Voltage 3		2.1	2.2	2.3	V
G_{mOLR}	OLR Error Amplifier Trans- conductance		200	350	500	µmho
l _{olrsi}	OLR Error Amplifier Sink Current	Normal, OLR = 2.5V	50	70	90	μA
l _{olri}	OLR Input Current	OLR = 1.5V	10	17	24	μA
l _{olro}	OLR Output Current	OLR = -1.5V	-25	-15	-7	μA
Volrr	OLR Input Voltage Range ⁽³⁾		-4		4	V

Note:

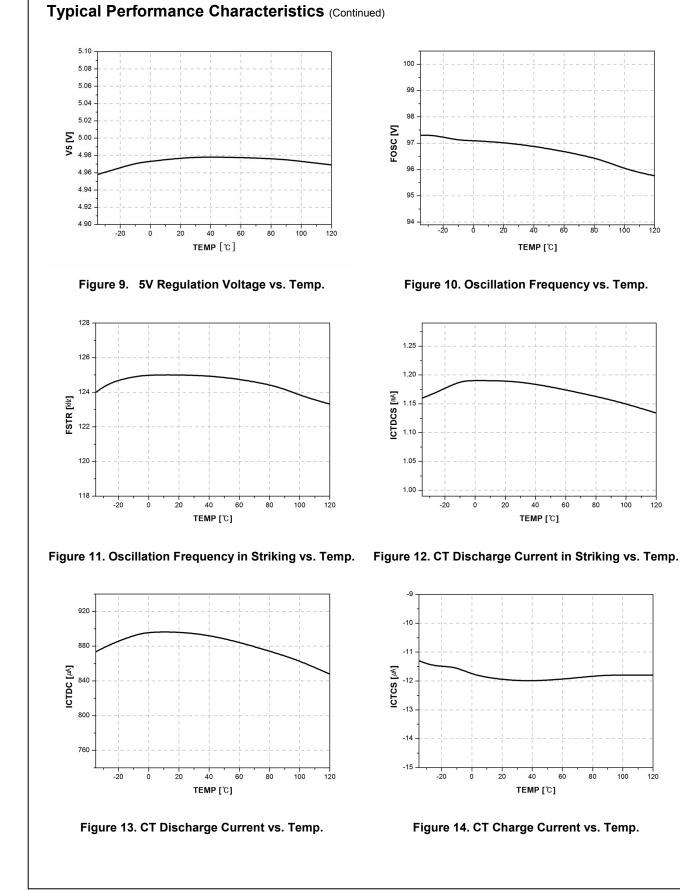
3. These parameters, although guaranteed, are not 100% tested in production.

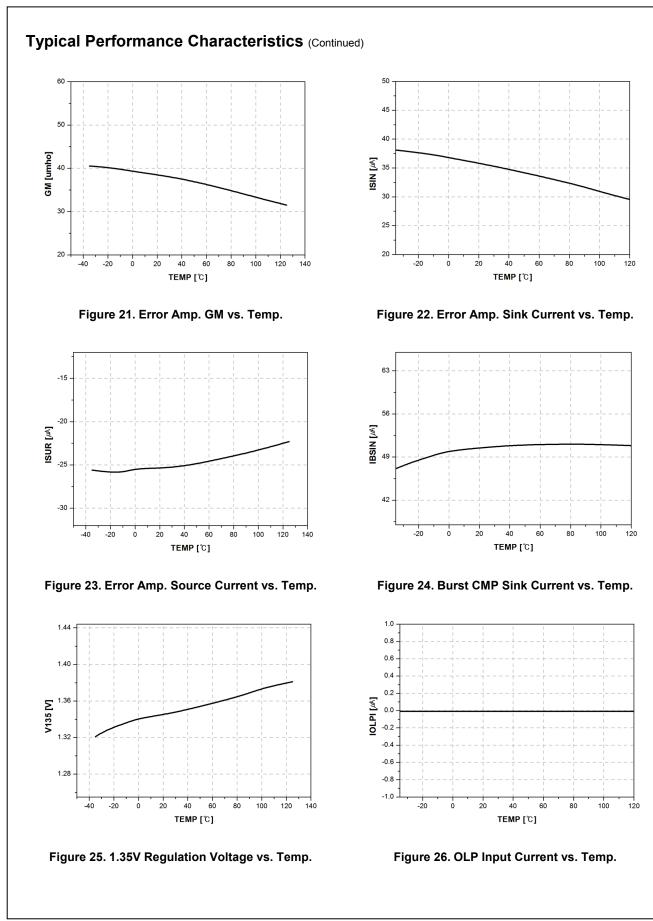
Electrical Characteristics (Continued)

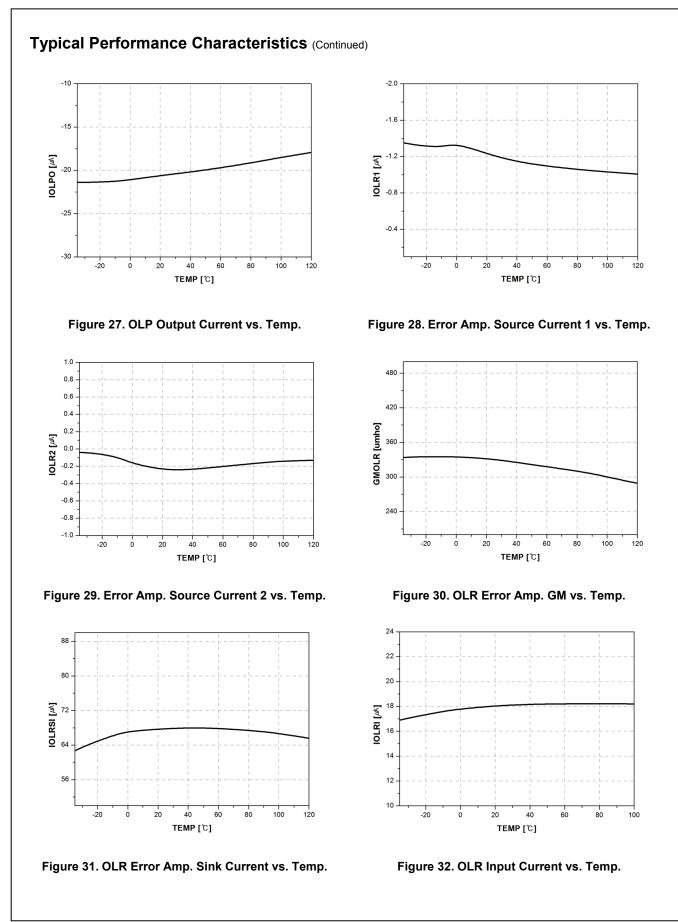

For typical values, $T_A = 25^{\circ}$ C, $V_{IN} = 15$ V, and -25° C $\leq T_A \leq 85^{\circ}$ C, unless otherwise specified. Specifications to -25° C $\sim 85^{\circ}$ C are guaranteed by design based on final characterization results.

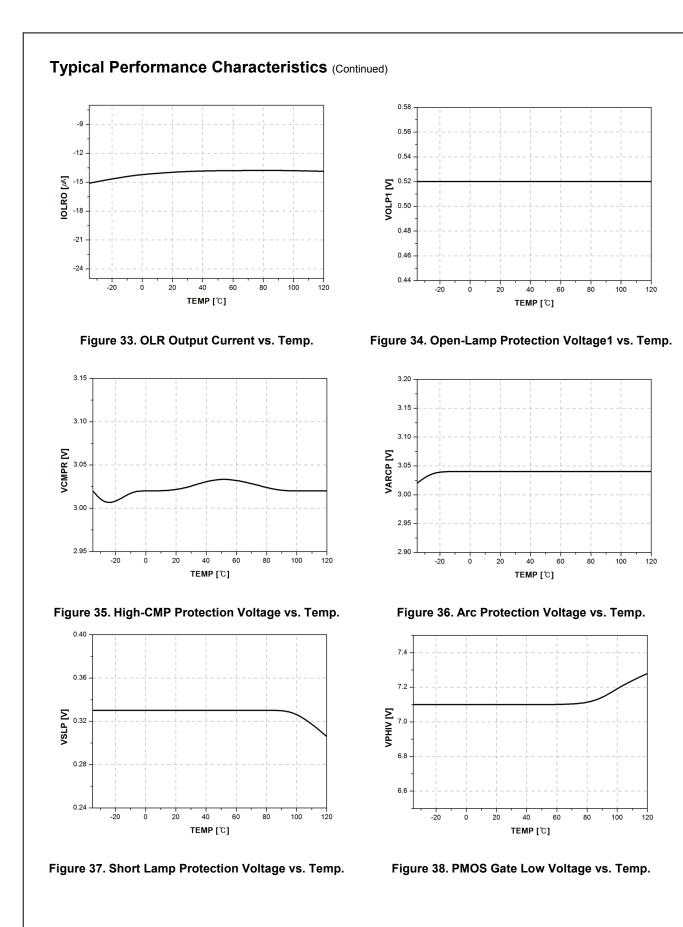
V _{olp0}	Open-Lamp Protection Voltage 0 ⁽⁴⁾	Open Lamp in Striking	0.95	1.00	1.05	V
V _{olp1}	Open-Lamp Protection Voltage 1	Open Lamp	0.44	0.51	0.58	V
V _{cmpr}	CMP-High Protection Voltage		2.95	3.05	3.15	V
Varcp	Arc Protection Voltage		2.90	3.05	3.20	V
V _{hfbp}	High-FB Protection Voltage ⁽⁴⁾		3.4	3.5	3.6	V
V _{slp}	Short Lamp Protection Voltage		0.24	0.32	0.40	V
T _{olps}		Striking, f _{oscb} = 330Hz		1.6		s
Tolpn	Open-Lamp Protection Delay ⁽⁴⁾	Normal, f _{osc} = 100kHz		10		ms
T _{cmprs}	()	Striking, f _{oscb} = 330Hz		1.6		s
T _{cmprn}	High-CMP Protection Delay ⁽⁴⁾	Normal, f _{osc} = 100kHz		10		ms
T _{olr}	Open-Lamp Regulation Delay ⁽⁴⁾	Normal, f _{osc} = 100kHz		320		μs
T _{slp}	Short Lamp Protection Delay ⁽⁴⁾	Normal, f _{osc} = 100kHz		1		ms
TSD	Thermal Shutdown ⁽⁴⁾			150		°C
utput Sec	tion				1	
V _{pdhv}	PMOS Gate High Voltage ⁽⁴⁾	V _{IN} = 15V		V _{IN}		V
V_{phlv}	PMOS Gate Low Voltage	V _{IN} = 15V	V _{IN} -6.5	V _{IN} -7	V _{IN} -7.5	V
V_{ndhv}	NMOS Gate High Voltage	V _{IN} = 15V	6.5	7.0	7.5	V
V _{ndlv}	NMOS Gate Low Voltage ⁽⁴⁾	V _{IN} = 15V		0		V
V _{puv}	PMOS Gate Voltage with UVLO Activated	V _{IN} = 4.5V	V _{IN} -0.3			V
V _{nuv}	NMOS Gate Voltage with UVLO Activated	V _{IN} = 4.5V			0.3	V
I _{pdsur}	PMOS Gate Drive Source Current ⁽⁴⁾	V _{IN} = 15V		-200		mA
I _{pdsin}	PMOS Gate Drive Sink Current ⁽⁴⁾	V _{IN} = 15V		300		mA
I _{ndsur}	NMOS Gate Drive Source Current ⁽⁴⁾	V _{IN} = 15V		200		mA
Indsin	NMOS Gate Drive Sink Current ⁽⁴⁾	V _{IN} = 15V		-300		mA
tr	Rising Time ⁽⁴⁾	V_{IN} = 15V, C_{load} = 2nF		70		ns
t _f	Falling Time ⁽⁴⁾ $V_{IN} = 15V, C_{load} = 2nF$			70		ns
aximum /	Minimum Overlap				1	
	Minimum Overlap Between Diagonal Switches ⁽⁴⁾	f _{osc} = 100kHz		0		%
	Maximum Overlap Between Diagonal Switches ⁽⁴⁾	f _{osc} = 100kHz	86		90	%
ad Time						
	PDR_A/NDR_B ⁽⁴⁾		150	200	250	ns
	PDR_C/NDR_D ⁽⁴⁾		150	200	250	ns

Note:


4. These Parameters, although guaranteed, are not 100% tested in production.


120


120


120

Functional Description

UVLO: The under-voltage lockout (UVLO) circuit guarantees the stable operation of the IC's control circuit by stopping and starting it as a function of the V_{IN} value. The UVLO circuit turns on the control circuit when V_{IN} exceeds 5.2V. When V_{IN} is lower than 4.75V, the IC start-up current is less than 100µA.

ENA: Applying voltage higher than 2V to the ENA pin enables the IC. Applying voltage lower than 0.7V to the ENA pin disables the IC.

Main Oscillator: In normal mode, the external timing capacitor (CT) is charged by the current flowing from the reference voltage source, which is formed by the timing resistor (RT) and the timing capacitor (CT). The sawtooth waveform charges up to 2V. Once CT voltage reaches 2V, the CT begins discharging down to 0.4V. Next, the CT starts charging again and a new switching cycle begins, as shown in Figure 39. The main frequency is programmed by adjusting the RT and CT value. The main frequency is calculated as:

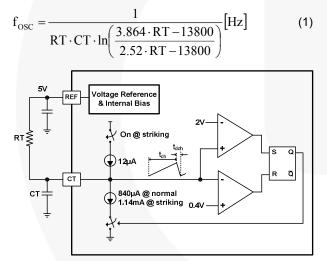


Figure 39. Main Oscillator Circuit

In striking mode, the external timing capacitor (CT) is charged by the current flowing from the reference voltage source and 12μ A current source, which increases the frequency. If the product of RT and CT value is constant, the striking frequency is depending on CT and is calculated as:

$$f_{str} = \frac{1}{RT \cdot CT \cdot ln \begin{pmatrix} 13.8 + (3I_1 - 4.6I_2)RT \\ -I_1 \cdot I_2 \cdot RT^2 \\ 13.8 + (4.6I_1 - 3I_2)RT \\ -I_1 \cdot I_2 \cdot RT^2 \end{pmatrix}}$$
(2)
$$\because I_1 = 12 \times 10^{-6} A, I_2 = 1.128 \times 10^{-3} A$$

Burst Dimming Oscillator: The burst dimming timing capacitor (BCT) is charged by the current flowing from the reference voltage source, which is formed by the burst dimming timing resistor (BRT) and the burst dimming timing capacitor (BCT). The sawtooth waveform charges up to 2V. Once the BCT voltage reaches 2V, the capacitor begins discharging down to 0.5V. Next, the BCT starts charging again and a new burst dimming cycle begins, as shown in Figure 40. The burst dimming frequency is programmed by adjusting the BCT and BRT values. The burst dimming frequency is calculated as:

$$f_{OSCB} = \frac{1}{BRT \cdot BCT \cdot \ln\left(\frac{0.039 \cdot BRT - 4500}{0.026 \cdot BRT - 4500}\right)} [Hz]$$
(3)

To avoid visible flicker, the burst dimming frequency should be greater than 120Hz.

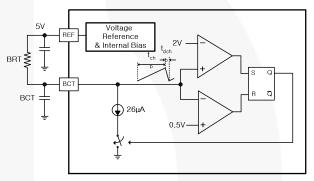


Figure 40. Burst Dimming Oscillator Circuit

Analog Dimming: For analog dimming, the lamp intensity is controlled with the external dimming signal (V_{ADIM}) and resistors. Figure 41 shows how to implement an analog dimming circuit. The polarity of OLP1 should be reversed with respect to OLP2.

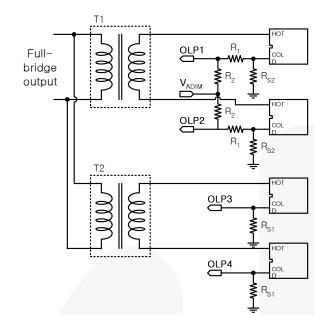


Figure 41. Analog Implementation Circuit

In full brightness, the maximum rms value of the lamp current is calculated as:

$$i_{\rm rms}^{\rm max} = 1.35 \frac{\pi}{2\sqrt{2}R_{\rm S1}} [A]$$
 (4)

The lamp intensity is inversely proportional to V_{ADIM} . As V_{ADIM} increases, the lamp intensity decreases and the rms value of the lamp current is calculated as:

$$i_{rms} = i_{rms}^{max} - \frac{\pi}{2\sqrt{2}} \frac{R_1}{R_{s2}R_2} V_{ADIM} [A]$$

$$\because R_{s2} = \frac{R_1 + R_2}{R_2} R_{s1} [\Omega]$$
(5)

Figure 42 shows the lamp current waveform vs. V_{ADIM} in an analog dimming mode.

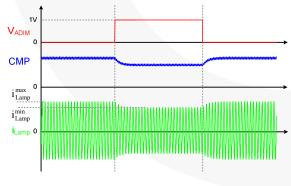


Figure 42. Analog Dimming Waveforms

Burst Dimming: Lamp intensity is controlled with the BDIM signal over a wide range. When BDIM voltage is lower than BCT voltage, the lamp current is turned on; so, 0V on BDIM commands full brightness. The duty cycle of the PWM pulse determines the lamp brightness. The lamp intensity is inversely proportional to BDIM voltage. As BDIM voltage increases, the lamp intensity decreases. Figure 43 shows the lamp current waveform vs. DIM in negative analog dimming mode.

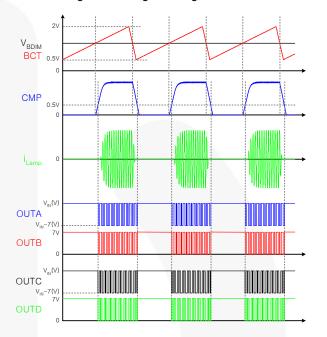


Figure 43. Burst Dimming Waveforms

Burst dimming can be implemented not only DC voltage, but also using PWM pulse as the BDIM signal. Figure 44 shows how to implement burst dimming using PWM pulse as BDIM signal.

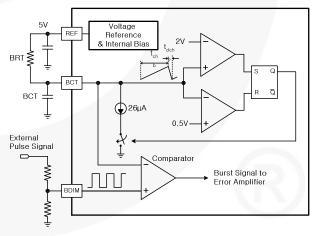


Figure 44. Burst Dimming Using an External Pulse

During striking mode, burst dimming operation is disabled to guarantee continuous striking time. Figure 45 shows burst dimming is disabled during striking mode.

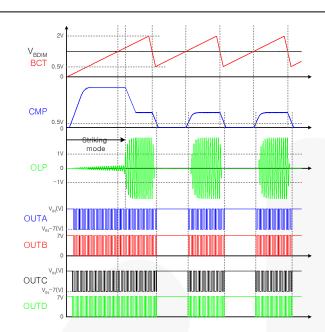
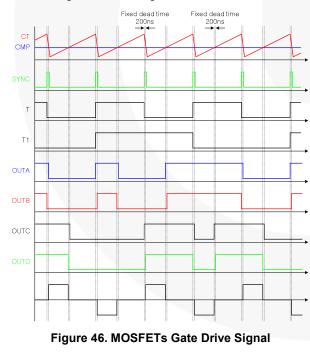



Figure 45. Burst Dimming During Striking Mode

Output Drives: FAN7317 uses the new phase-shift method for full-bridge Cold Cathode Fluorescent Lighting (CCFL) drive. As a result, the temperature difference between the left and the right leg is almost zero, because ZVS occurs in both of the legs by turns. The detail timing is shown in Figure 46.

Protections: The FAN7317 provides the following latchmode protections: Open-Lamp Regulation (OLR), Arc Protection, Open-Lamp Protection (OLP), Short-Lamp Protection (SLP), CMP-High Protection, and Thermal Shutdown (TSD). The latch is reset when V_{IN} falls to the UVLO voltage or ENA is pulled down to GND. **Open-Lamp Regulation:** When the maximum of the rectified OLR input voltages (V_{OLR}^{max}) is more than 2V, the IC enters regulation mode and controls CMP voltage. The IC limits the lamp voltage by decreasing CMP source current. If V_{OLR}^{max} is between 1.8V and 2V, CMP source current decreases from 22µA to 1µA. Then, if V_{OLR}^{max} reaches 2V, CMP source current decreases to 0µA, so CMP voltage remains constant and the lamp voltage also remains constant, as shown in Figure 47. Finally, if V_{OLR}^{max} is more than 2.2V, the error amplifier for OLR is operating and CMP sink current increases, so CMP voltage decreases and the lamp voltage maintains the determined value.

At the same time, while V_{OLR}^{max} is more than 2V, the counter starts counting 32 rectified OLR pulses in normal mode, then the IC enters shutdown, as shown in Figure 49. This counter is reset by detecting the positive edge of BCT. This protection is disabled in striking mode to ignite lamps reliably.

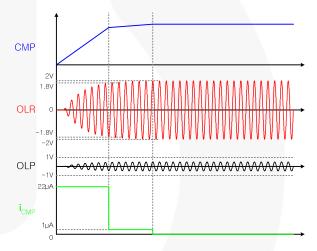


Figure 47. Open-Lamp Regulation in Striking Mode

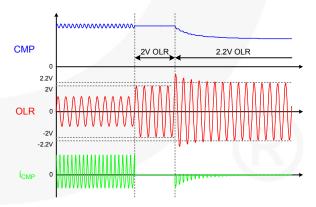


Figure 48. Open-Lamp Regulation in Normal Mode

17

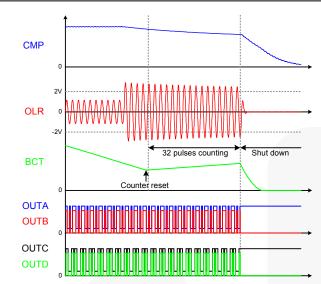


Figure 49. Over-Voltage Protection in Normal Mode

Arc Protection: If the maximum of the rectified OLR input voltages (V_{OLR}^{max}) is higher than 3V, the IC enters shutdown mode without delay, as shown in Figure 50.

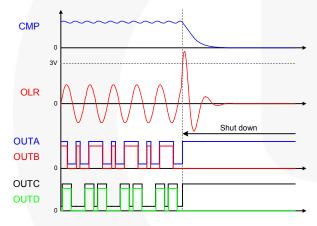


Figure 50. Arc Protection

Open-Lamp Protection: If the minimum of the rectified OLP voltages (V_{OLP}^{min}) is less than 1V during initial operation, the IC operates in striking mode only for 1.6s, as shown in Figure 51. After ignition, if V_{OLP}^{min} is less than 0.5V in normal mode, the IC is shut down after a delay of 10ms, as shown in Figure 52.

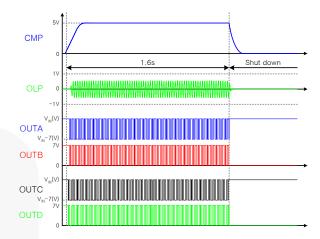
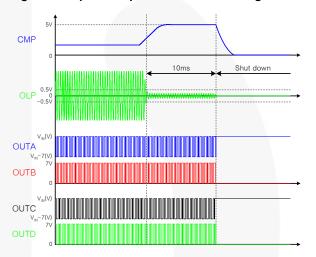



Figure 51. Open-Lamp Protection in Striking Mode

Figure 52. Open-Lamp Protection in Normal Mode

Short-Lamp Protection: If the minimum of the rectified OLR voltages (V_{OLR}^{min}) is less than 0.3V in normal mode, the IC is shut down after a delay of 1ms, as shown in Figure 53. This protection is disabled in striking mode to ignite lamps reliably.

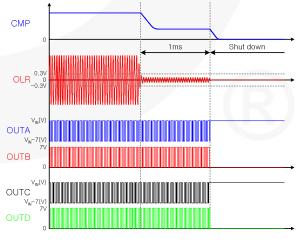


Figure 53. Short-Lamp Protection

CMP-High Protection: If CMP is more than 3V in normal mode, the IC is shut down after a delay of 10ms, as shown in Figure 54. This protection is disabled in striking mode to ignite lamps reliably.

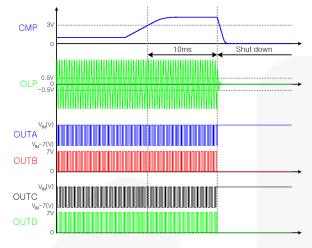
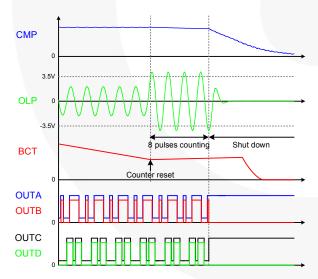
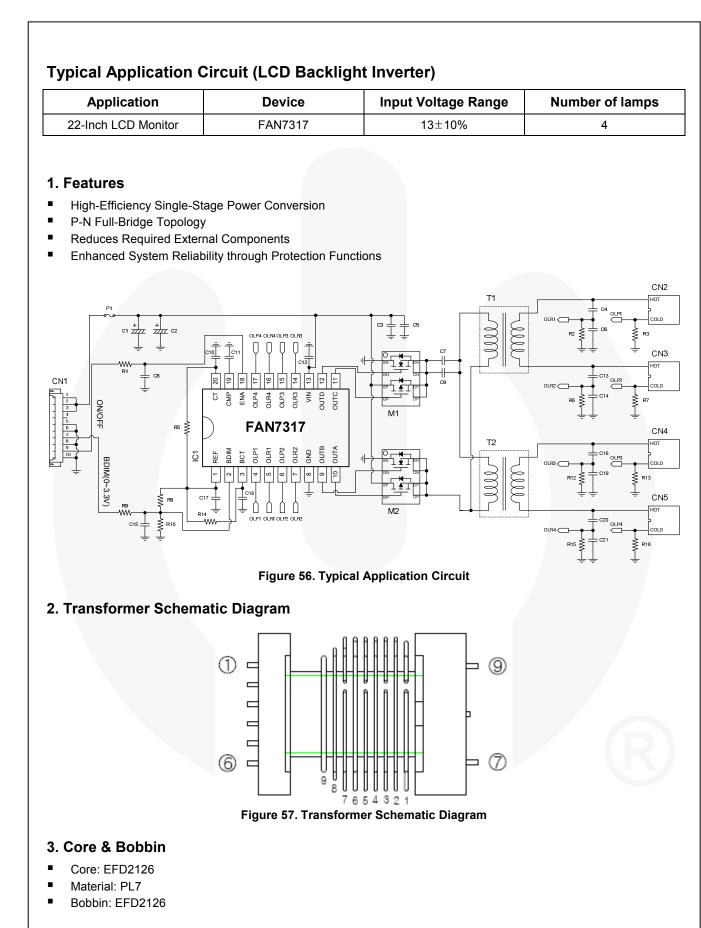
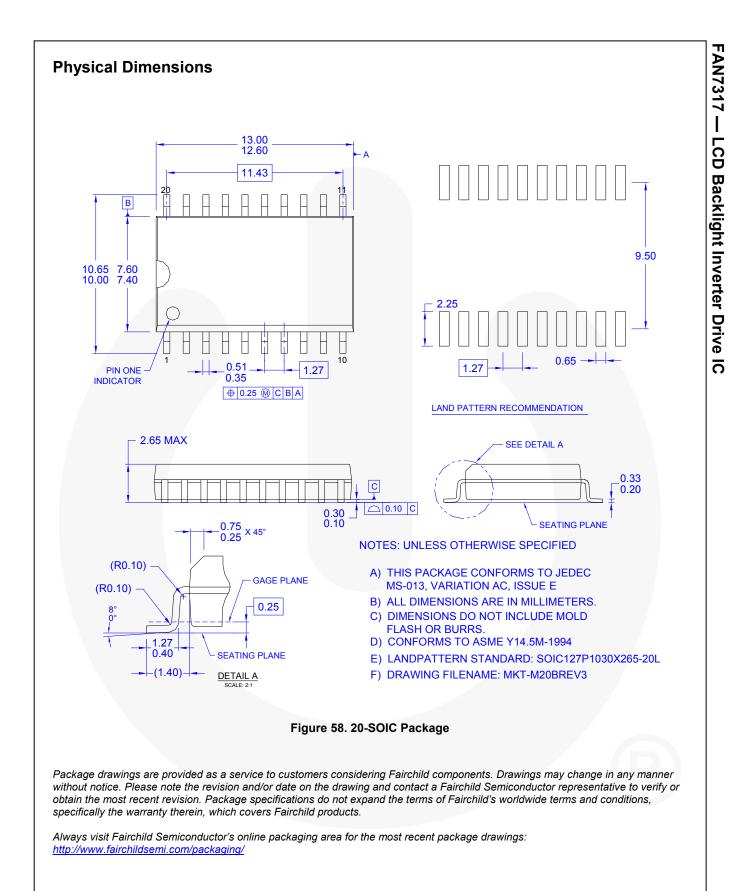


Figure 54. CMP-High Protection

High-FB Protection: If the minimum of the rectified OLP voltages(V_{OLP}^{max}) is more than 3.5V, the counter starts counting eight rectified OLP pulses in normal mode, then the IC enters shutdown, as shown in Figure 55. This counter is reset by detecting the positive edge of BCT. This protection is disabled in striking mode to ignite lamps reliably.


Figure 55. High-FB Protection

Thermal Shutdown: The IC provides the function to detect the abnormal over-temperature. If the IC temperature exceeds approximately 150°C, the thermal shutdown triggers.

N73
1
ųω
1
Ü
Ξ
a
ิด
N
l.
Ъ
-
2
Ð
E
erter
Drive
Ī
Ô
$ \mathbf{O} $

Pin No.	Wire	Turns Inductance Leakage		Inductance	Remarks		
5 → 2	1 UEW (0.4φ 17		250µH	16µH		1kHz, 1V
7 → 9	1 UEW 0	.04φ 2256(0+0+37		4.2H 290		90mH	1kHz, 1V
. BOM of t	he Applicati	on Circuit					
Part Ref.	Value	Description	Part Ref	Va	lue	Descr	iption
	Fuse		C14	3.	3n	50V 10	608 K
F1	24V 3A	FUSE	C15	10	0n	50V 10	608 K
	Resistor (SI	MD)	C17	1	μ	50V 20	012 K
R1	10k	1608 J	C18	4.	7n	50V 1	608 K
R2	10k	1608 J	C19	3.	3n	50V 1	608 K
R3	200	1608 F	C21	3.	3n	50V 1	608 K
R5	100k	1608 F			Capacito	or (DIP)	
R6	10k	1608 J	C4 3p		р	3KV	
R7	200	1608 F	C13	3	р	3KV	
R8	75k	1608 J	C16 3p		3К	3KV	
R9	10k	1608 J	C20	3р		3К	Υ.
R10	8.2k	1608 J	Electrolytic capacitor		capacitor		
R12	10k	1608 J	C1	220µ 25		V	
R13	200	1608 F	C2	22	220µ 25V		V
R14	1.5M	1608 F			MOSFET	(SMD)	
R15	10k	1608 J	M1	FDD8	424H	Fairchild Ser	niconductor
R16	200	1608 F	M2	FDD8	424H	Fairchild Ser	niconductor
	Capacitor (S	MD)			Wafer (SMD)	
C3	1µ	50V 2012 K	CN1	12505	WR-10		
C5	1µ	50V 2012 K	CN2	35001V	VR-02A		
C6	3.3n	50V 1608 K	CN3	35001V	35001WR-02A		
C7	10µ	16V 3216	CN4	35001V	VR-02A		
C8	10n	50V 1608 K	CN5	35001V	VR-02A		
C9	10µ	16V 3216			Transform	er (DIP)	
C10	220p	50V 1608 K	TX1			EFD2	2126
C11	10n	50V 1608 K	TX2			EFD2	2126
C12	1µ	50V 2012 K					

FAIRCHILD SEMICONDUCTOR TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. FlashWriter®* The Power Franchise[®] 2Cool™ PDP SPM™ AccuPower™ **FPS™** Power-SPM™ The Right Technology for Your Success™ Auto-SPM™ F-PFS™ PowerTrench® p wer franchise FRFET® PowerXS™ AX-CAP™ Global Power Resourcesm BitSiC[®] Programmable Active Droop™ TinγBoost™ Build it Now™ Green FPS™ QFET TinyBuck™ Green FPS™ e-Series™ QS™ CorePLUS™ TinyCalc™ CorePOWER™ Gmax™ Quiet Series™ TinyLogic[®] GTO™ CROSSVOLT™ Rapid Configure™ **TINYOPTO™** IntelliMAX™ CTL™ TinyPower™ **ISOPLANAR™** Current Transfer Logic™ TinvPWM™ Saving our world, 1mW/W/kW at a time™ DEUXPEED® MegaBuck™ TinyWire™ SignalWise™ MICROCOUPLER™ Dual Cool™ SmartMax™ TranSiC EcoSPARK® MicroFET™ TriFault Detect™ SMART START™ EfficientM a×™ MicroPak™ TRUECURRENT® SPM ESBC™ MicroPak2™ uSerDes™ STEALTH™ R F MillerDrive™ SuperFET[®] MotionMa×™ SuperSOT™-3 Fairchild® Motion-SPM™ SuperSOT™-6 UHC[®] Fairchild Semiconductor® mWSaver™ SuperSOT™-8 Ultra FRFET™ FACT Quiet Series™ OptoHiT™ SupreMOS® FACT[®] FAST[®] UniFET™ **OPTOLOGIC®** SyncFET™ VCX™ **OPTOPLANAR®** Sync-Lock™ VisualM ax™ FastvCore™ XSTM FETBench™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 155

ົດ