DM74ALS874B Dual 4-Bit D-Type Edge-Triggered Flip-Flop with 3-STATE Outputs

FAIRCHILD

SEMICONDUCTOR TM

DM74ALS874B Dual 4-Bit D-Type Edge-Triggered Flip-Flop with 3-STATE Outputs

General Description

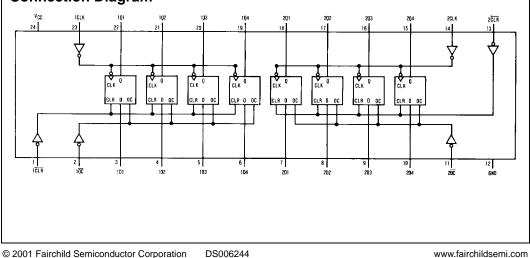
This dual 4-bit register features totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide this register with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. It is particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the DM74ALS874B are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

Features


- Switching specifications at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL
- process

 3-STATE buffer-type outputs drive bus lines directly
- Space saving 300 mil wide package
- Asynchronous clear

Ordering Code:

Order Number	Package Number	Package Description
DM74ALS874BWM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
DM74ALS874BNT	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available in	Tape and Reel. Specify b	by appending the suffix letter "X" to the ordering code.

DM74ALS874B **Function Table** Logic Diagram 1 CLOCK -23 Inputs Output CLR D CLK oc Q 1 OUTPUT 2 Control Ζ Х Х Х Н Х Х L L L 1 CLR -Ŷ н Н н L \uparrow н L L L н Х 101 -L L Q_0 ۵ $\label{eq:horizontal} \begin{array}{c} L = LOW \mbox{ State } \\ H = HIGH \mbox{ State } \\ X = Don't \mbox{ Care } \\ \hat{T} = \mbox{ Positive Edge Transition } \\ Z = High \mbox{ Impedance State } \\ Q_0 = \mbox{ Previous Condition of } Q \end{array}$ 22 101 PRE Õ 102 -۵ 21 102 PRE Q 103 <u>5</u> D 20 103 PRE ō 104 -**D** CLK 19 PRE Ô 7 201 -D 18____201 PRE Q 202 -8 0 D CLK 17 202 PRE Q 203 ____ n 16 203 PRE Q 204 -10 0 <u>15</u> 2Q4 2 CLR -13 PRE ō 2 OUTPUT 11 Control 2 CLOCK -14 ₽

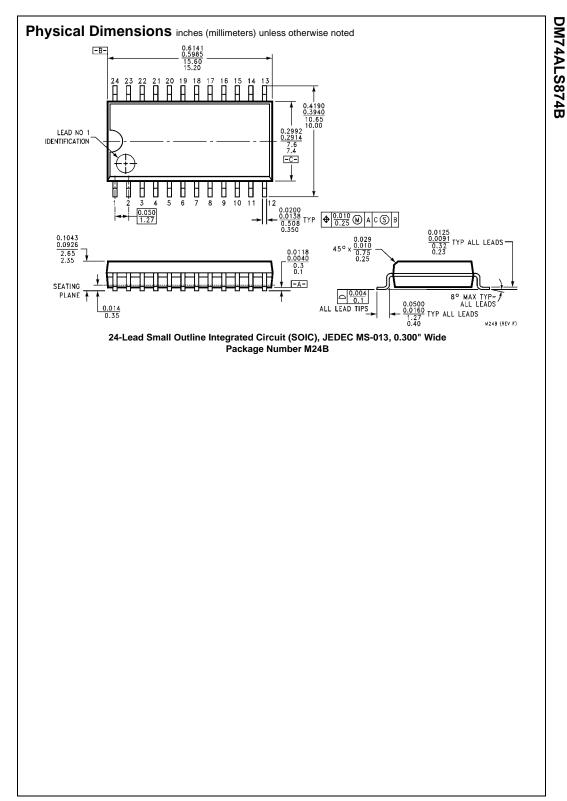
104

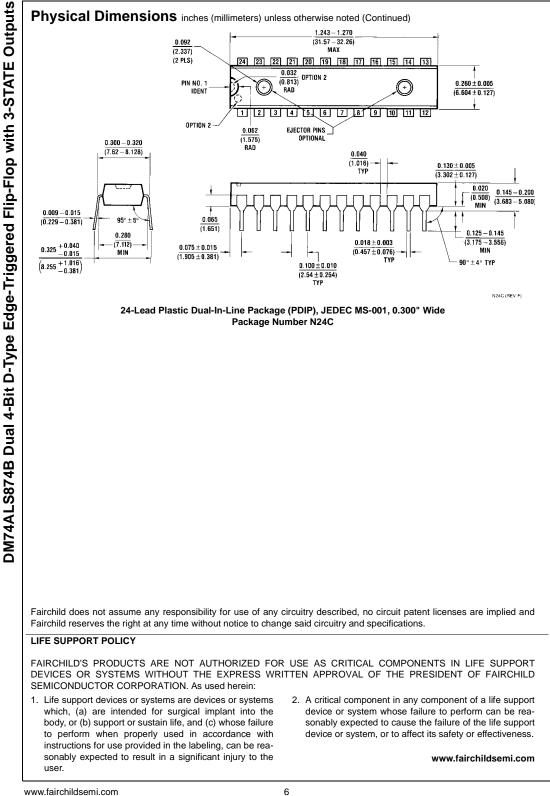
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Voltage Applied to Disabled Output	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Typical θ _{JA}	
N Package	51.0°C/W
M Package	86.5°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.


Recommended Operating Conditions


Symbol	Parameter		Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Current				-2.6	mA
I _{OL}	LOW Level Output Current				24	mA
f _{CLK}	Clock Frequency		0		30	MHz
t _{WCLK}	Width of Clock Pulse	HIGH	16.5			ns
		LOW	16.5			ns
t _{WCLR}	Width of Clear Pulse	LOW	10			ns
t _{SU}	Data Setup Time (Note 2)		15↑			ns
t _H	Data Hold Time (Note 2)		0↑			ns
t _{SU}	Clear Inactive		12			ns
T _A	Free Air Operating Temperature		0		70	°C

Note 2: The (^) arrow indicates the positive edge of the Clock is used for reference.

DM74ALS874B

Electrical Characteristics over recommended operating free air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25°C. Symbol Parameter Conditions Units Min Тур Max $V_{CC} = 4.5V, I_I = -18 \text{ mA}$ Input Clamp Voltage -1.2 VIK V $V_{CC} = 4.5V$ HIGH Level I_{OH} = Max V_{OH} 2.4 3.2 V Output Voltage V_{IL} = V_{IL} Max $V_{CC} = 4.5V$ to 5.5V $I_{OH} = -400 \ \mu A$ V $V_{CC} - 2$ LOW Level $V_{CC} = 4.5V$ $I_{OL} = 12 \text{ mA}$ V_{OL} 0.25 V 0.4 Output Voltage V_{IH} = 2V $I_{OL} = 24 \text{ mA}$ 0.35 0.5 V Input Current @ Maximum V_{CC} = 5.5V, V_{IH} = 7V ΙĮ 0.1 mΑ Input Voltage HIGH Level Input Current 20 $V_{CC} = 5.5V, V_{IH} = 2.7V$ μA $I_{\rm H}$ LOW Level Input Current $V_{CC} = 5.5V, V_{IL} = 0.4V$ -0.2 mΑ $I_{\rm IL}$ Output Drive Current $V_{CC} = 5.5V, V_{O} = 2.25V$ -30 -112 mA I_{O} OFF-State Output Current $V_{CC} = 5.5V, V_{IH} = 2V$ I_{OZH} 20 μΑ $V_0 = 2.7V$ HIGH Level Voltage Applied OFF-State Output Current $V_{CC} = 5.5V, V_{IH} = 2V$ I_{OZL} μΑ -20 $V_{0} = 0.4V$ LOW Level Voltage Applied Supply Current $V_{CC} = 5.5V$ Outputs HIGH 14 21 mΑ I_{CC} Outputs OPEN Outputs LOW 19 30 mΑ Outputs Disabled 20 32 mΑ **Switching Characteristics** over recommended operating free air temperature range. Symbol Parameter Conditions From То Min Max Units f_{MAX} Maximum Clock Frequency V_{CC} = 4.5V to 5.5V 30 MHz $R_L = 500, \Omega,$ Propagation Delay Time t_{PLH} Any Q Clock 4 14 ns LOW-to-HIGH Level Output $C_L = 50 \text{ pF}$ Propagation Delay Time t_{PHL} Clock Any Q 4 14 ns HIGH-to-LOW Level Output Output Enable Time Output t_{PZH} Any Q 4 18 ns to HIGH Level Output Control Output Output Enable Time t_{PZL} 4 18 Any Q ns to LOW Level Output Control Output Disable Time Output t_{PHZ} Any Q 2 10 ns from HIGH Level Output Control t_{PLZ} Output Disable Time Output 3 12 Any Q ns from LOW Level Output Control Propagation Delay Time t_{PHL} Clear Any Q 5 17 ns HIGH-to-LOW Level Output

