

Function Table

Inputs						Data I/O (Note 1)		Operation or Function
GAB	$\overline{\text { Gr }}$ A	CAB	CBA	SAB	SBA	A1 thru A8	B1 thru B8	
X	H	\uparrow	H/L	X	X	Input	Not Specified	Store A, Hold B
L	X	H/L	\uparrow	X	X	Not Specified	Input	Store B, Hold A
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B Data
L	H	H/L	H/L	X	X	Input	Input	Isolation, Hold Storage
L	L	X	X	X	L	Output	Input	Real-Time B Data to A Bus
L	L	X	H/L	X	H	Output	Input	Stored B Data to A Bus
H	H	X	X	L	X	Input	Output	Real-Time A Data to B Bus
H	H	\uparrow	\uparrow	X	X	Input	Output	Stored A Data to B Bus
H	H	\uparrow	\uparrow	$\begin{gathered} x \\ (\text { Note 2) } \end{gathered}$	X	Input	Output	Store A in both Registers
L	L	\uparrow	\uparrow	X	$\begin{array}{c\|} X \\ \text { (Note 2) } \end{array}$	Output	Input	Store B in both Registers
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

$\mathrm{H}=$ HIGH Logic Level
$\mathrm{L}=$ LOW Logic Level
X = Don't Care (Either LOW or HIGH Logic Levels, including transitions)
H/L = Either LOW or HIGH Logic Level excluding transitions
$\uparrow=$ Positive-going edge of pulse
Note 1: The data output functions may be enabled or disabled by various signals at the \bar{G} and DIR inputs. Data input functions are always enabled, ie., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.
Note 2: Select control = L; clocks can occur simultaneously
Select control = H; clocks must be staggered in order to load both registers.

Logic Diagram

Absolute Maximum Ratings(Note 3)

Supply Voltage	7 V
Input Voltage	
\quad Control Inputs	7 V
I/O Ports	5.5 V
Operating Free-Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Typical $\theta_{\text {JA }}$	
N Package	$44.5^{\circ} \mathrm{C} / \mathrm{W}$
M Package	$80.5^{\circ} \mathrm{C} / \mathrm{W}$

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-15	mA
I_{OL}	LOW Level Output Current			24	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	0		40	MHz
t_{W}	Pulse Duration, Clocks LOW or HIGH	12.5			ns
t_{SU}	Data Setup Time, A before CAB or B before CBA (Note 4)	$10 \uparrow$		ns	
t_{H}	Data Hold Time, A after CAB or B after CBA (Note 4)	$0 \uparrow$		ns	
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Note 4: \uparrow = with reference to the LOW-to-HIGH transition of the respective clock.

Electrical Characteristics

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	HIGH Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
			$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.2		
			$\mathrm{I}_{\mathrm{OH}}=$ Max	2			
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4	V
			$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.35	0.5	
			$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.35	0.5	
I_{1}	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	I/O Ports, $\mathrm{V}_{1}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
			Control Inputs, $\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			100	
${ }_{\text {IH }}$	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$, (Note 5)				20	$\mu \mathrm{A}$
ILL	LOW Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}(\text { Note } 5) \end{aligned}$	Control Inputs			-200	$\mu \mathrm{A}$
			I/O Ports			-200	
I_{0}	Output Drive Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-30		-112	mA
${ }_{\text {ICC }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	Outputs HIGH		47	76	mA
			Outputs LOW		55	88	
			Outputs Disabled		55	88	

[^0]

Note 6: These parameters are measured with the internal output state of the storage register opposite to that of the bus input.
DM74ALS652 Octal 3-STATE Bus Transceiver and Register
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

N24C (REV F)
24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N24C
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Note 5: For $1 / O$ ports the 3 -STATE output currents ($\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$) are included in the I_{IH} and I_{IL} parameters.

