
Absolute Maximum RatingS(Note 1)
Supply Voltage
Input Voltage
Control Inputs
I/O Ports
Operating Free-Air Temperature Range
Storage Temperature Range
Typical $\theta_{\text {JA }}$
N Package

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2		V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage		0.8	V
I_{OH}	HIGH Level Output Current		-15	mA
I_{OL}	LOW Level Output Current		24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature Range	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
V_{IK}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{H}_{Y S}$	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		0.2	0.32		V
V_{OH}	HIGH Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
			$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4			
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2			
V_{OL}	LOW Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4	V
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.35	0.5	
I	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	I/O Ports, $\mathrm{V}_{1}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
			Control Inputs, $\mathrm{V}_{1}=7 \mathrm{~V}$			100	
$\mathrm{IIH}^{\text {H }}$	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-100	$\mu \mathrm{A}$
IO	Output Drive Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-30		-112	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	Outputs HIGH		30	45	mA
			Outputs LOW		36	55	
			Outputs Disabled		38	58	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Figures 1, 2; (Note 2)(Note 3)) } \end{aligned}$			0.5		V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Figures 1, } 2 ; \text { (Note 2)(Note 3)) } \end{aligned}$			-0.2		V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 2)(Note 4) } \end{aligned}$			1.6		V
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & (\text { Note 2) }(\text { Note 4) } \end{aligned}$			1.0		V

Note 2: Plastic DIP package.
Note 3: $\mathrm{n}=$ number of device outputs; $\mathrm{n}-1$ outputs switching, each driven 0 V to 3 V one output @ GND.
Note 4: $\mathrm{n}=$ number of device outputs; n outputs switching, $\mathrm{n}-1$ inputs switching 0 V to 3 V . Input under test switching 3 V to threshold (V ILD); 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right) ; \mathrm{f}=1 \mathrm{MHz}$

Switching Characteristics

Symbol	Parameter	Conditions	From (Input) To (Output)	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{R}_{1}=\mathrm{R}_{2}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	A or B to B or A	3	10	ns
${ }_{\text {tphL }}$	Propagation Delay Time HIGH-to-LOW Level Output		A or B to B or A	3	10	ns
$\mathrm{t}_{\text {pzH }}$	Output Enable Time to HIGH Level Output		$\overline{\mathrm{G}}$ to A or B	5	20	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW Level Output		$\overline{\mathrm{G}}$ to A or B	5	20	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from HIGH Level Output		$\overline{\mathrm{G}}$ to A or B	2	10	ns
tpLz	Output Disable Time from LOW Level Output		$\overline{\mathrm{G}}$ to A or B	4	15	ns

ALS Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of ALS.
Equipment:
Word Generator
Printed Circuit Board Test Fixture
Dual Trace Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the word generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. Swap out the channels that have more than 150 ps of skew until all channels being used are within 150 ps. It is important to deskew the word generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set V_{CC} to 5.0 V .
5. Set the word generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and affect the results of the measurement.
6. Set the word generator input levels at $O V$ LOW and $3 V$ HIGH. Verify levels with a digital volt meter.

FIGURE 1. Quiet Output Noise Voltage Waveforms
Note 5: $\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OHP}}$ are measured with respect to V_{OH} reference. $\mathrm{V}_{\mathrm{OLV}}$ and $V_{\text {OLP }}$ are measured with respect to ground reference
Note 6: Input pulses have the following characteristics: $\mathrm{f}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew $<150 \mathrm{ps}$.
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the HL transition. Measure V_{OH} and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the LH transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeat ability of the measurements.
$V_{I L D}$ and $V_{I H D}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $V_{\text {ILD }}$.
- Next decrease the input HIGH voltage level on the word generator, V_{IH} until the output begins to oscillate. Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\mathrm{IHD}}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
