CD4029BC Presettable Binary/Decade Up/Down Counter

General Description

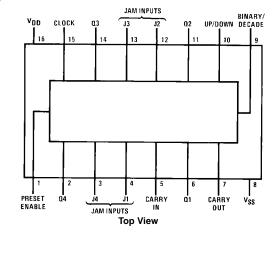
FAIRCHILD

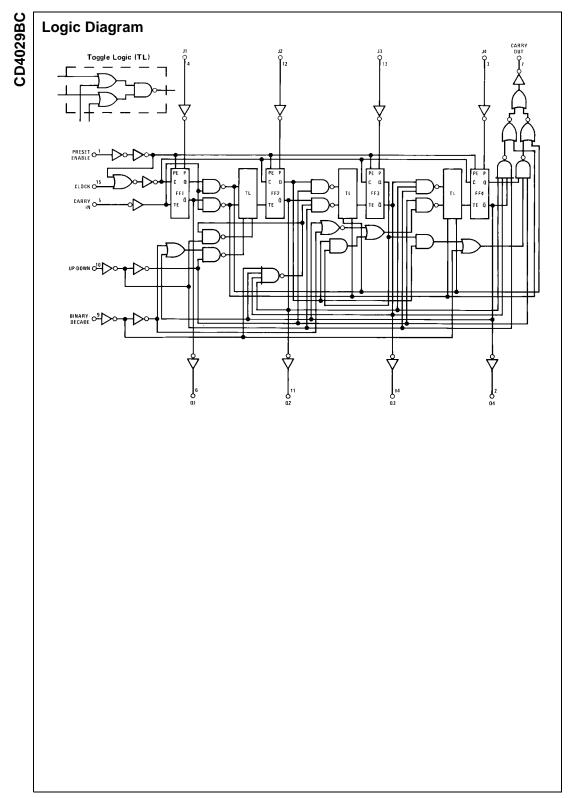
SEMICONDUCTOR

The CD4029BC is a presettable up/down counter which counts in either binary or decade mode depending on the voltage level applied at binary/decade input. When binary/decade is at logical "1", the counter counts in binary, otherwise it counts in decade. Similarly, the counter counts up when the up/down input is at logical "1" and vice versa.

A logical "1" preset enable signal allows information at the "jam" inputs to preset the counter to any state asynchronously with the clock. The counter is advanced one count at the positive-going edge of the clock if the carry in and preset enable inputs are at logical "0". Advancement is inhibited when either or both of these two inputs is at logical "1". The carry out signal is normally at logical "1" state and goes to logical "0" state when the counter reaches its maximum count in the "up" mode or the minimum count in the "down" mode provided the carry input is at logical "0" state.

All inputs are protected against static discharge by diode clamps to both V_{DD} and $V_{\text{SS}}.$


Features


- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: fan out of 2 driving 74L or 1 driving 74LS
- Parallel jam inputs
- Binary or BCD decade up/down counting

Ordering Code:

Order Number	Package Number	Package Description
CD4029BCWM	M16B	16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
CD4029BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4029BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Symbol

 I_{DD}

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V _{DD})	-0.5V to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5V to V_{DD} + 0.5 V_{DC}
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Parameter

DC Supply Voltage (V_{DD})

conditions for actual device operation. Note 2: $V_{SS} = 0V$ unless otherwise specified.

Input Voltage (VIN)

3V to 15 V_{DC} 0V to $V_{\text{DD}}\,V_{\text{DC}}$ $-55^{\circ}C$ to $+125^{\circ}C$

+125°C

Max

150

300

600

Min

5

10

20

Units

μΑ

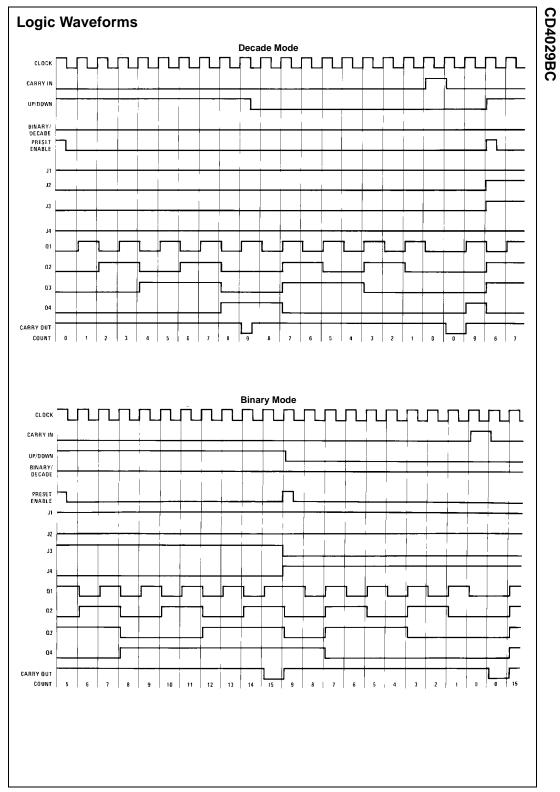
Operating Temperature Range (T_A)

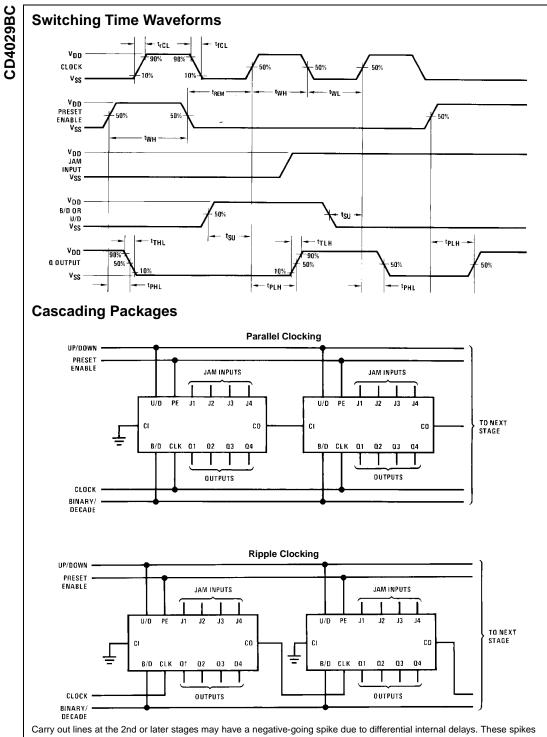
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be oper-

ated at these limits. The table of "Electrical Characteristics" provides

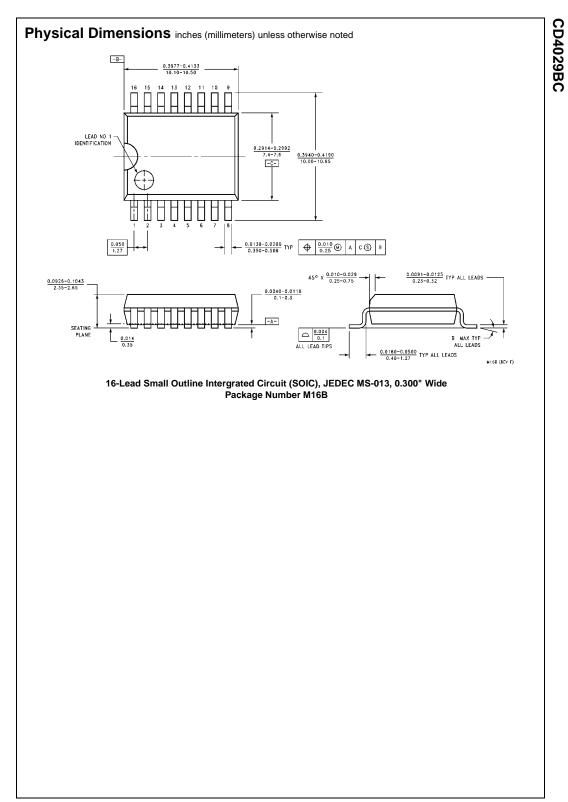
CD4029BC

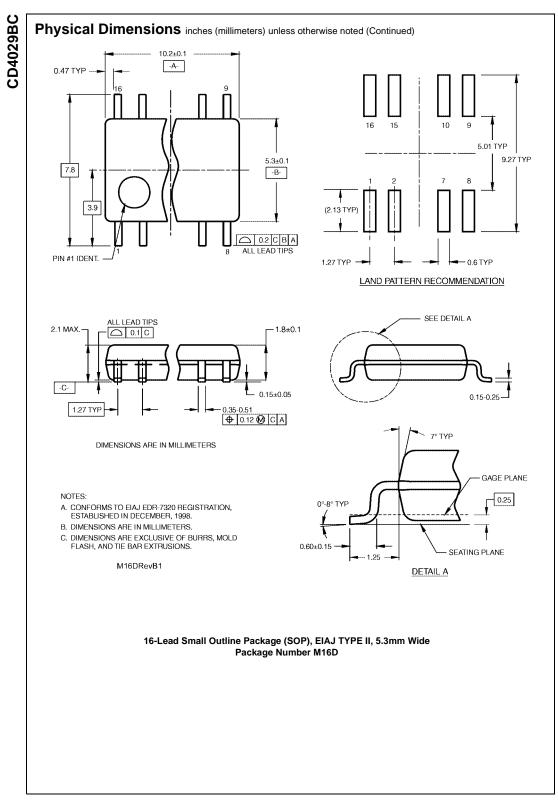
DC Electrical Characteristics (Note 2) –55°C +25°C Conditions Min Max Тур Min Max Quiescent Device Current $V_{DD} = 5V$ 5 $V_{DD} = 10V$ 10 $V_{DD} = 15V$ 20

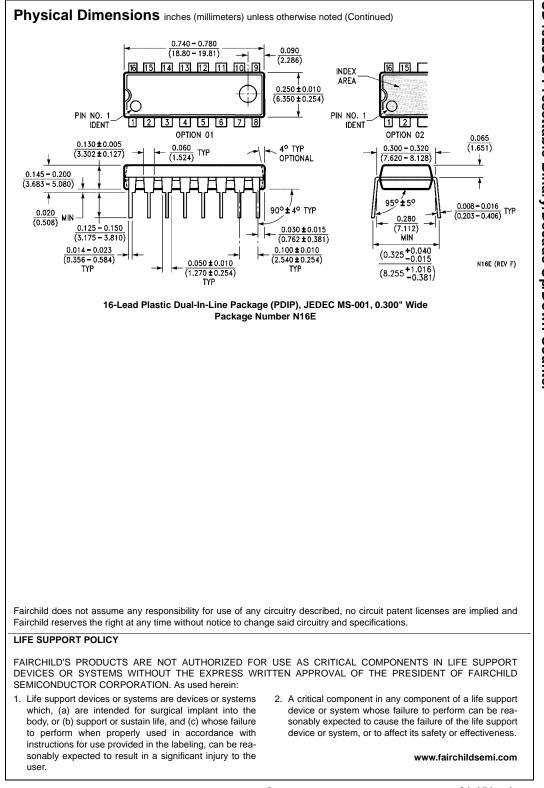

		55								
V _{OL}	LOW Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$		3.0			3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		
	Input Voltage	$V_{DD} = 10V$, $V_O = 1V$ or $9V$	7.0		7.0			7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0			11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μA
	1									· · · · · · · · · · · · · · · · · · ·


Note 3: I_{OH} and I_{OL} are tested one output at a time

·A == =, =L	= 50 pF, R_L = 200k, Input $t_{rCL} = t_{fC}$	L = 20 ns, unless otherwise specified	ea			
Symbol	Parameter	Conditions	Min	Тур	Max	Ur
CLOCKED OPER						
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		200	400	
	to Q Outputs	$V_{DD} = 10V$		85	170	r
		$V_{DD} = 15V$		70	140	
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		320	640	
	to Carry Output	$V_{DD} = 10V$		135	270	r
		$V_{DD} = 15V$		110	220	
t _{PHL} or t _{PLH}	Propagation Delay Time	C _L = 15 pF				
	to Carry Output	$V_{DD} = 5V$		285	570	
		$V_{DD} = 10V$		120	240	r
		$V_{DD} = 15V$		95	190	
t _{THL} or t _{TLH}	Transition Time/Q	$V_{DD} = 5V$		100	200	
	or Carry Output	$V_{DD} = 10V$		50	100	r
		$V_{DD} = 15V$		40	80	
t _{WH} or t _{WL}	Minimum Clock	$V_{DD} = 5V$		160	320	
	Pulse Width	$V_{DD} = 10V$		70	135	r
		$V_{DD} = 15V$		55	110	
t _{rCL} or t _{fCL}	Maximum Clock Rise	$V_{DD} = 5V$	15			
	and Fall Time	$V_{DD} = 10V$	10			h
		$V_{DD} = 15V$	5			
t _{SU}	Minimum Set-Up Time	$V_{DD} = 5V$		180	360	
		$V_{DD} = 10V$		70	140	r
		$V_{DD} = 15V$		55	110	
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	1.5	3.1		
		$V_{DD} = 10V$	3.7	7.4		М
		$V_{DD} = 15V$	4.5	9		
C _{IN}	Average Input Capacitance	Any Input		5	7.5	F
C _{PD}	Power Dissipation Capacitance	Per Package (Note 5)		65		F
PRESET ENABLE						1
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		285	570	
	to Q output	$V_{DD} = 10V$		115	230	r
		V _{DD} = 15V		95	195	
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		400	800	
	to Carry Output	$V_{DD} = 10V$		165	330	r
		V _{DD} = 15V		135	260	
t _{WH}	Minimum Preset Enable	$V_{DD} = 5V$		80	160	
	Pulse Width	$V_{DD} = 10V$		30	60	r
	Minimum Descat Frankla	$V_{DD} = 15V$		25	50	
t _{REM}	Minimum Preset Enable	$V_{DD} = 5V$		150	300	
	Removal Time	$V_{DD} = 10V$		60	120	r
		$V_{DD} = 15V$		50	100	
CARRY INPUT OF	PERATION Propagation Delay Time	V - F V		205	E00	1
t _{PHL} or t _{PLH}	1 0 3	$V_{DD} = 5V$		265	530	
	to Carry Output	$V_{DD} = 10V$		110	220	r
	Dreperedien Delay Taxa	V _{DD} = 15V		90	180	
4 4	Propagation Delay Time	$C_{L} = 15 \text{ pF}$		1	1	1
t _{PHL} , t _{PLH}				200	400	
t _{PHL} , t _{PLH}	to Carry Output	$V_{DD} = 5V$ $V_{DD} = 10V$		200 85	400 170	r


Note 4: *AC Parameters are guaranteed by DC correlated testing.


Note 5: CPD determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics application note, AN-90.



Carry out lines at the 2nd or later stages may have a negative-going spike due to differential internal delays. These spikes do not affect counter operation, but if the carry out is used to trigger external circuitry the carry out should be gated with the clock.

CD4029BC Presettable Binary/Decade Up/Down Counter