CD4019BC Quad AND-OR Select Gate

FAIRCHILD

SEMICONDUCTOR

CD4019BC Quad AND-OR Select Gate

General Description

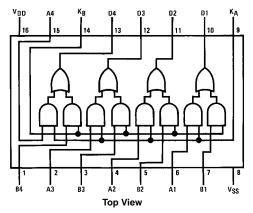
The CD4019BC is a complementary MOS quad AND-OR select gate. Low power and high noise margin over a wide voltage range is possible through implementation of N- and P-channel enhancement mode transistors. These complementary MOS (CMOS) transistors provide the building blocks for the 4 "AND-OR select" gate configurations, each consisting of two 2-input AND gates driving a single 2-input OR gate. Selection is accomplished by control bits K_A and K_B. All inputs are protected against static discharge damage.

Features

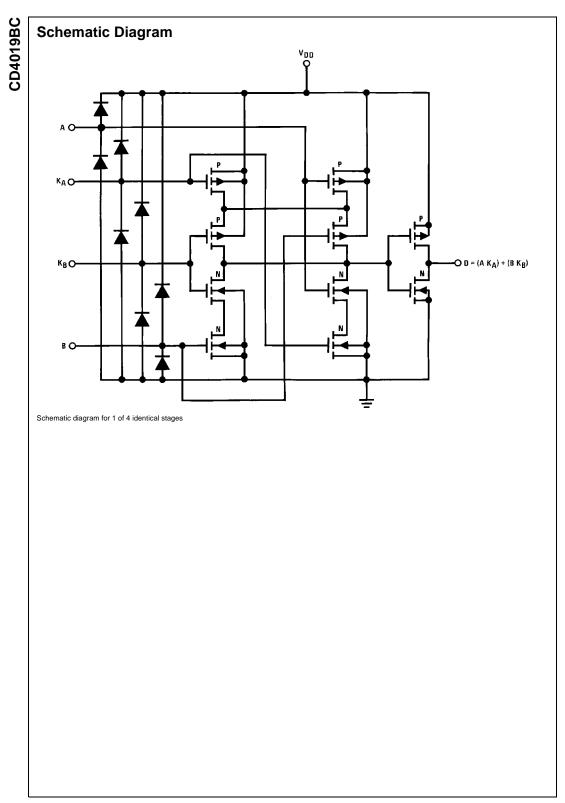
- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS

October 1987

Revised April 2002


Applications

- AND-OR select gating
- Shift-right/shift-left registers
- True/complement selection
- AND/OR/EXCLUSIVE-OR selection


Ordering Code:

Order Number	Package Number	Package Description
CD4019BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4019BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available i	in Tape and Reel. Specify b	by appending the suffix letter "X" to the ordering code.

Connection Diagram

© 2002 Fairchild Semiconductor Corporation DS005952

Absolute Maximum Ratings(Note 1)

(Note 2)	
Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	-0.5V to V _{DD} $+0.5V$
Storage Temperature Range (T_S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operation Conditions (Note 2)

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN})

+3V to +15V 0V to V_{DD}V CD4019BC

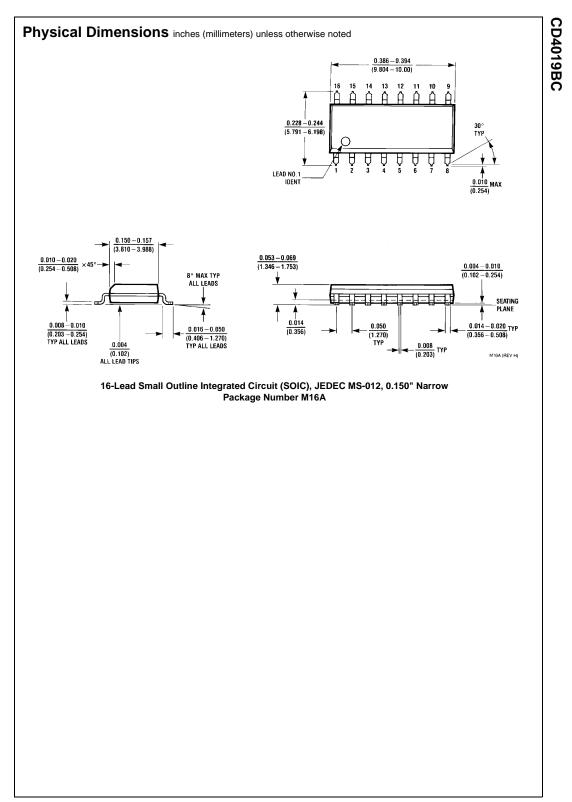
mended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation. \\

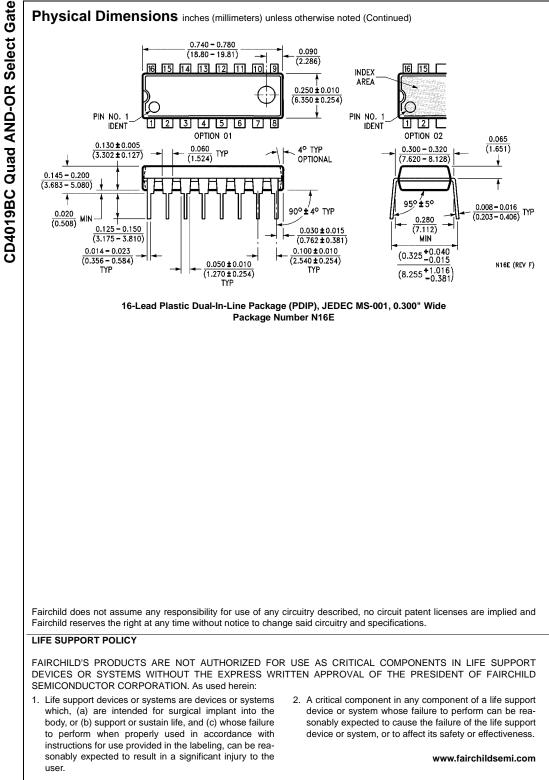
Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	-5	–55°C		+25°C			+125°C	
Symbol			Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$		0.25		0.25	1		7.5	
	Current	$V_{DD} = 10V$		0.5		0.5	2		15	μA
		$V_{DD} = 15V$		1.0		1.0	4		30	
V _{OL}	LOW Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
VIL	LOW Level	$V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$		1.5		2	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_O = 1.0V \text{ or } 9.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6	4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$	3.5		3.5	3		3.5		
	Input Voltage	$V_{DD} = 10V, V_O = 1.0V \text{ or } 9.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	9		11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	1		0.36		
	Current (Note 4)	$V_{DD} = 10V, V_O = 0.5V$	1.6		1.3	2.5		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	10		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.25		-0.2	-0.4		-0.14		
	Current (Note 4)	$V_{DD} = 10V, V_O = 9.5V$	-0.62		-0.5	-1.0		-0.35		mA
		$V_{DD} = 15V, V_O = 13.5V$	-1.8		-1.5	-3.0		-1.1		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.10		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.10		1.0	μΑ

Note 3: $V_{SS} = 0V$ unless otherwise specified.


Note 4: $I_{\mbox{OH}}$ and $I_{\mbox{OL}}$ are tested one output at a time.


υ
Ω
ດ
Σ
9
Z
C
_

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} ,	Propagation Delay,	$V_{DD} = 5V$		100	300	
t _{PLH}	Input to Output	$V_{DD} = 10V$		50	120	ns
		$V_{DD} = 15V$		45	100	
t _{THL}	HIGH-to-LOW Level	$V_{DD} = 5V$		100	200	
	Transition Time	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
t _{TLH}	LOW-to-HIGH Level	$V_{DD} = 5V$		150	300	
	Transition Time	$V_{DD} = 10V$		70	140	ns
		$V_{DD} = 15V$		50	100	
C _{IN}	Input Capacitance	All A and B Inputs		5	7.5	5 L
		K _A and K _B Inputs		10	15	pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

