October 1987 Revised March 2002

CD40174BC • CD40175BC Hex D-Type Flip-Flop • Quad D-Type Flip-Flop

General Description

FAIRCHILD

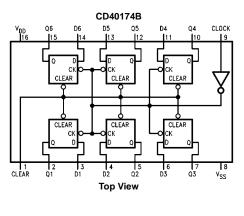
SEMICONDUCTOR

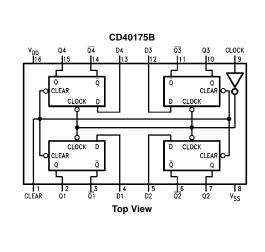
The CD40174BC consists of six positive-edge triggered Dtype flip-flops; the true outputs from each flip-flop are externally available. The CD40175BC consists of four positiveedge triggered D-type flip-flops; both the true and complement outputs from each flip-flop are externally available.

All flip-flops are controlled by a common clock and a common clear. Information at the D inputs meeting the set-up time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. The clearing operation, enabled by a negative <u>pulse</u> at Clear input, clears all Q outputs to logical "0" and Q s (CD40175BC only) to logical "1".

All inputs are protected from static discharge by diode clamps to V_{DD} and $V_{\text{SS}}.$

Features


- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility:
- fan out of 2 driving 74L or 1 driving 74 LS ■ Equivalent to MC14174B, MC14175B
- Equivalent to MM74C174, MM74C175


Ordering Code:

Order Number	Package Number	Package Description
CD40174BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD40174BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD40175BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD40175BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

© 2002 Fairchild Semiconductor Corporation DS005987

CD40174BC • CD40175BC

Inputs			Outputs		
Clear	Clock	D	Q	Q (Note 1)	
L	Х	Х	L	н	
Н	↑	н	н	L	
н	↑	L	L	н	
н	н	х	NC	NC	
н	L	х	NC	NC	

H = HIGH Level L = LOW Level X = Irrelevant ↑ = Transition from LOW-to-HIGH level NC = No change Note 1: Q for CD40175B only

Truth Table

Absolute Maximum Ratings(Note 2)

-0.5V to +18V
–0.5V to V _{DD} +0.5 V _{DC}
$-65^{\circ}C$ to $+150^{\circ}C$
700 mW
500 mW
260°C
-

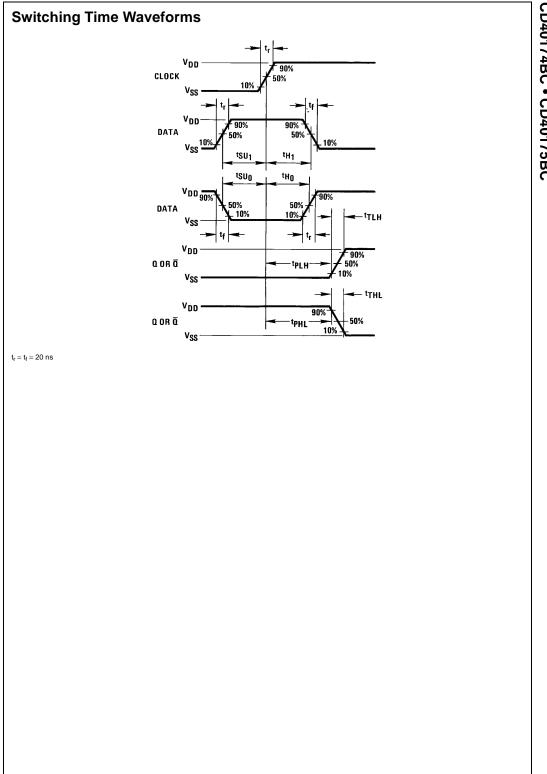
Recommended Operating Conditions (Note 3)

DC Supply Voltage (V_{DD}) Input Voltage (VIN)

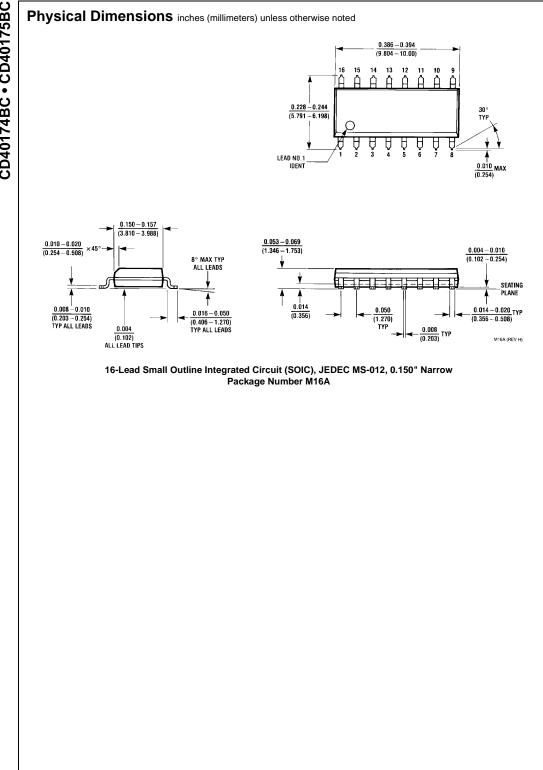
3V to 15 V_DC 0V to V_{DD} V_{DC} -55°C to +125°C

Operating Temperature Range (T_A) **Note 2:** "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditiones for external device e

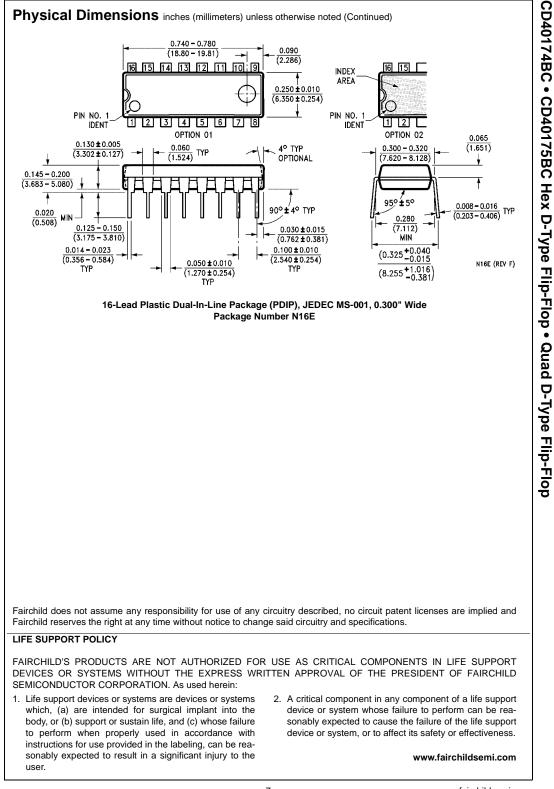
ditions for actual device operation. Note 3: $V_{SS} = 0V$ unless otherwise specified.


DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	–55°C		+25°C			+125°C		Units	
Symbol	Falameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units	
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		1.0			1.0		30		
Current	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		2.0			2.0		60	μΑ	
		$V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS}$		4.0			4.0		120		
V _{OL} LO	LOW Level Output	$V_{DD} = 5V$		0.05			0.05		0.05		
	Voltage	$V_{DD} = 10V \qquad \qquad I_O < 1 \ \mu A$		0.05			0.05		0.05	V	
		$V_{DD} = 15V$		0.05			0.05		0.05		
V _{OH} H	HIGH Level Output	$V_{DD} = 5V$	4.95		4.95	5		4.95			
	Voltage	$V_{DD} = 10V \qquad \qquad I_0 < 1 \ \mu A$	9.95		9.95	10		9.95		V	
		$V_{DD} = 15V$	14.95		14.95	15		14.95			
V _{IL}	LOW Level Input	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5		
Voltage	Voltage	$V_{DD} = 10V, V_O = 1V \text{ or } 9V$		3.0			3.0		3.0	V	
		$V_{DD} = 15 V, V_O = 1.5 V \text{ or } 13.5 V$		4.0			4.0		4.0		
V _{IH} HIGH Level Voltage	HIGH Level Input	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5			
	Voltage	$V_{DD} = 10V, V_O = 1V \text{ or } 9V$	7.0		7.0			7.0		V	
		$V_{DD} = 15 V, V_O = 1.5 V \text{ or } 13.5 V$	11.0		11.0			11.0			
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36			
Curr	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA	
		$V_{DD} = 15V, V_O = 1.5V$	4.2		3.4	8.8		2.4			
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36			
0	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{DD} = 15V, V_O = 13.5V$	-4.2		-3.4	-8.8		-2.4			
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$	1	0.1		-10 ⁻⁵	0.1	1	-1.0		
		$V_{DD} = 15V, V_{IN} = 15V$		-0.1		10 ⁻⁵	-0.1		1.0	μA	


Note 4: I_{OH} and I_{OL} are tested one output at a time.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time to a	$V_{DD} = 5V$		190	300	•
PAL' PLA	Logical "0" or Logical "1" from	$V_{DD} = 10V$		75	110	ns
	Clock to Q or Q (CD40175 Only)	$V_{DD} = 15V$		60	90	_
t _{PHL}	Propagation Delay Time to a	$V_{DD} = 5V$		180	300	
	Logical "0" from Clear to Q	$V_{DD} = 10V$		70	110	ns
		$V_{DD} = 15V$		60	90	
t _{PLH}	Propagation Delay Time to a Logical	$V_{DD} = 5V$		230	400	
FLA	"1" from Clear to \overline{Q} (CD40175 Only)	$V_{DD} = 10V$		90	150	ns
		$V_{DD} = 15V$		75	120	_
t _{SU}	Time Prior to Clock Pulse that	$V_{DD} = 5V$		45	100	
30	Data must be Present	$V_{DD} = 10V$		15	40	ns
		$V_{DD} = 15V$		13	35	
t _H	Time after Clock Pulse that	$V_{DD} = 5V$		-11	0	
	Data Must be Held	$V_{DD} = 10V$		-4	0	ns
		$V_{DD} = 15V$		-3	0	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
t _{WH} , t _{WL}	Minimum Clock Pulse Width	$V_{DD} = 5V$		130	250	
		$V_{DD} = 10V$		45	100	ns
		V _{DD} = 15V		40	80	
t _{WL}	Minimum Clear Pulse Width	$V_{DD} = 5V$		120	250	
		$V_{DD} = 10V$		45	100	ns
		$V_{DD} = 15V$		40	80	
t _{RCL}	Maximum Clock Rise Time	$V_{DD} = 5V$	15			
		$V_{DD} = 10V$	5.0			μs
		$V_{DD} = 15V$	5.0			
t _{fCL}	Maximum Clock Fall Time	$V_{DD} = 5V$	15	50		
		$V_{DD} = 10V$	5.0	50		μs
		$V_{DD} = 15V$	5.0	50		
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	2.0	3.5		
		$V_{DD} = 10V$	5.0	10		MHz
		V _{DD} = 15V	6.0	12		
C _{IN}	Input Capacitance	Clear Input		10	15	- 5
		Other Input		5.0	7.5	pF
C _{PD}	Power Dissipation	Per Package (Note 6)		130		pF


Note 5: AC Parameters are guaranteed by DC correlated testing. Note 6: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics application note, AN-90.

CD40174BC • CD40175BC

CD40174BC • CD40175BC

www.fairchildsemi.com

7