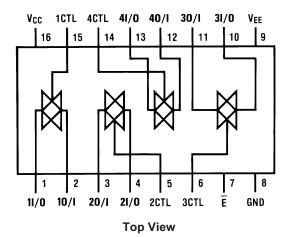


74VHC4316 **Quad Analog Switch with Level Translator**

Features

- Typical switch enable time: 20ns
- Wide analog input voltage range: ±6V
- Low "ON" resistance: 50 Typ. (V_{CC}-V_{EE} = 4.5V) 30 Typ. $(V_{CC}-V_{EE} = 9V)$
- Low guiescent current: 80µA maximum (74VHC)
- Matched switch characteristics
- Individual switch controls plus a common enable
- Pin functional compatible with 74HC4316

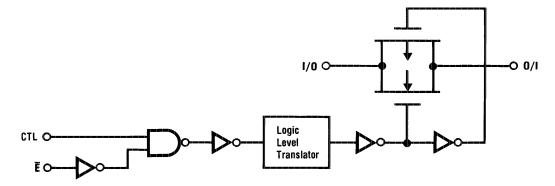
General Description


These devices are digitally controlled analog switches implemented in advanced silicon-gate CMOS technology. These switches have low "ON" resistance and low "OFF" leakages. They are bidirectional switches, thus any analog input may be used as an output and viceversa. Three supply pins are provided on the 4316 to implement a level translator which enables this circuit to operate with 0V-6V logic levels and up to ±6V analog switch levels. The 4316 also has a common enable input in addition to each switch's control which when HIGH will disable all switches to their off state. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to V_{CC} and ground.

Ordering Information

Order Number	Package Number	Package Description
74VHC4316M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC4316WM	M16B	16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHC4316MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.


Connection Diagram

Truth Table

Inp	outs	Switch
Ē	CTL	I/O–O/I
Н	Х	"OFF"
L	L	"OFF"
L	Н	"ON"

Logic Diagram

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5 to +7.5V
V _{EE}	Supply Voltage	+0.5 to -7.5V
V _{IN}	DC Control Input Voltage	-1.5 to V _{CC} +1.5V
V _{IO}	DC Switch I/O Voltage	V _{EE} -0.5 to V _{CC} +0.5V
I _{IK} , I _{OK}	Clamp Diode Current	±20mA
I _{OUT}	DC Output Current, per pin	±25mA
I _{cc}	DC V _{CC} or GND Current, per pin	±50mA
T _{STG}	Storage Temperature Range	–65°C to +150°C
P _D	Power Dissipation	600mW
	S.O. Package only	500mW
T _L	Lead Temperature (Soldering 10 seconds)	260°C

Note:

1. Unless otherwise specified all voltages are referenced to ground.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply Voltage	2	6	V
V _{EE}	Supply Voltage	0	-6	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Rise or Fall Times			
	V _{CC} = 2.0V		1000	ns
	$V_{CC} = 4.5V$		500	
	$V_{CC} = 6.0V$ $V_{CC} = 12.0V$		400	
	V _{CC} = 12.0V		250	

DC Electrical Characteristics⁽²⁾

					1 1		T _A = -40°C to +85°C	
Symbol	Parameter	Conditions	V _{EE}	V _{CC}	Тур.	Guara	nteed Limits	Units
V _{IH}	Minimum HIGH Level			2.0V		1.5	1.5	V
	Input Voltage			4.5V		3.15	3.15	
				6.0V		4.2	4.2	
V _{IL}	Maximum LOW Level			2.0V		0.5	0.5	V
	Input Voltage			4.5V		1.35	1.35	
				6.0V		1.8	1.8	
R _{ON}	Minimum "ON"	$V_{CTL} = V_{IH},$	GND	4.5V	100	170	200	Ω
	Resistance ⁽³⁾	$I_S = 2.0 \text{mA},$	-4.5V	4.5V	40	85	105	
		$V_{IS} = V_{CC}$ to V_{EE} , (Fig. 1)	-6.0V	6.0V	30	70	85	
		$V_{CTL} = V_{IH},$	GND	2.0V	100	180	215	
		$I_S = 2.0 \text{mA},$	GND	4.5V	40	80	100	
		$V_{IS} = V_{CC}$ or V_{EE} (Fig. 1)	-4.5V	4.5V	50	60	75	
		(1.19.1)	-6.0V	6.0V	20	40	60	
R _{ON}	Maximum "ON"	$V_{CTL} = V_{IH},$	GND	4.5V	10	15	20	Ω
	Resistance Matching	$V_{IS} = V_{CC}$ to V_{EE}	-4.5V	4.5V	5	10	15	
			-6.0V	6.0V	5	10	15	
I _{IN}	Maximum Control Input Current	$V_{IN} = V_{CC}$ or GND	GND	6.0V		±0.1	±1.0	μA
I _{IZ}	Maximum Switch "OFF"	$V_{OS} = V_{CC}$ or V_{EE} ,	GND	6.0V		±30	±300	nA
	Leakage Current	$V_{IS} = V_{EE} \text{ or } V_{CC},$ $V_{CTL} = V_{IL} \text{ (Fig. 2)}$	-6.0V	6.0V		±50	±500	
12	Maximum Switch "ON"	$V_{IS} = V_{CC}$ to V_{EE} ,	GND	6.0V		±20	±75	nA
	Leakage Current	$V_{CTL} = V_{IH},$ $V_{OS} = OPEN$ (Fig. 3)	-6.0V	6.0V		±30	±150	
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND,	GND	6.0V		1.0	10	μA
	Supply Current	$I_{OUT} = 0 \mu A$	-6.0V	6.0V		4.0	40	1

Notes:

- 2. For a power supply of 5V $\pm 10\%$ the worst case on resistances (R_{ON}) occurs for VHC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.
- 3. At supply voltages (V_{CC}-V_{EE}) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

AC Electrical Characteristics

 $\rm V_{CC} = 2.0V - 6.0V, \, V_{EE} = 0V - 6V, \, C_L = 50 \, \, pF$ unless otherwise specified

					T _A = -	+25°C	T _A = -40°C to +85°C	
Symbol	Parameter	Conditions	V_{EE}	V _{CC}	Тур.	Guarai	nteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation		GND	3.3V	15	30	37	ns
	Delay Switch In to Out		GND	4.5V	5	10	13	
			-4.5V	4.5V	4	8	12	
			-6.0V	6.0V	3	7	11	
t _{PZL} , t _{PZH}	Maximum Switch Turn	$R_L = 1k\Omega$	GND	3.3V	25	97	120	ns
	"ON" Delay (Control)		GND	4.5V	20	35	43	
			-4.5V	4.5V	15	32	39	
			-6.0V	6.0V	14	30	37	
t _{PHZ} , t _{PLZ}	Maximum Switch Turn	$R_L = 1 k\Omega$	GND	3.3V	35	145	180	ns
	"OFF" Delay (Control)		GND	4.5V	25	50	63	
			-4.5V	4.5V	20	44	55	
			-6.0V	6.0V	20	44	55	
t _{PZL} , t _{PZH}	Maximum Switch Turn		GND	3.3V	27	120	150	ns
122 1211	"ON" Delay (Enable)		GND	4.5V	20	41	52	
			-4.5V	4.5V	19	38	48	
			-6.0V	6.0V	18	36	45	
t _{PLZ} , t _{PHZ}	Maximum Switch Turn "OFF" Delay (Enable)		GND	3.3V	42	155	190	ns
1 62. 1112			GND	4.5V	28	53	67	
			-4.5V	4.5V	23	47	59	
			-6.0V	6.0V	21	47	59	
	Minimum Frequency	$R_L = 600\Omega$,	0V	4.5	40			MHz
	Response (Fig. 7) 20 log (V _{OS} /V _{IS})= –3 dB	$V_{IS} = 2V_{PP} \text{ at}$ $(V_{CC} - V_{EE}/2)^{(4)(5)}$	-4.5V	4.5V	100			
	Control to Switch	$R_L = 600\Omega$, $f = 1MHz$	0V	4.5V	100			mV
	Feedthrough Noise (Fig. 8)	$C_L = 50 pF^{(5)(6)}$	-4.5V	4.5V	250			
	Crosstalk Between any	$R_L = 600\Omega$, $f = 1MHz$	0V	4.5V	-52			dB
	Two Switches (Fig. 9)		-4.5V	4.5V	-50			
	Switch OFF Signal	$R_L = 600\Omega$,	0V	4.5V	-42			dB
	Feedthrough Isolation (Fig. 10)	$f = 1MHz,$ $V_{CTL} = V_{IL}^{(5)(6)}$	-4.5V	4.5V	-44			
THD	Sinewave Harmonic Distortion	$\label{eq:continuous_loss} \left \begin{array}{l} R_L = 10 \ K\Omega, \\ C_L = 50 \ pF, \ f = 1 KHz \\ V_{IS} = 4 \ V_{PP} \\ V_{IS} = 8 \ V_{PP} \end{array} \right $	0V -4.5V	4.5V 4.5V	0.013			%
C _{IN}	Maximum Control Input Capacitance	10 11			5			pF
C _{IN}	Maximum Switch Input Capacitance				35			pF
C _{IN}	Maximum Feedthrough Capacitance	V _{CTL} = GND			0.5			pF
C _{PD}	Power Dissipation Capacitance				15			pF

- 4. Adjust 0 dBm for f = 1 kHz (Null R_L/Ron Attenuation).
- 5. V_{IS} is centered at V_{CC}-V_{EE}/2.
 6. Adjust for 0 dBm.

AC Test Circuits and Switching Time Waveforms

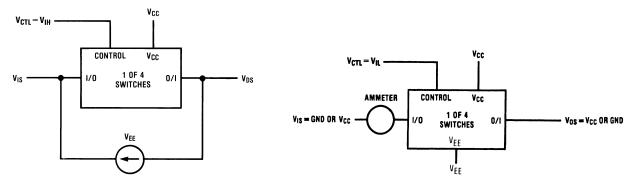


Figure 1. "ON" Resistance

Figure 2. "OFF" Channel Leakage Current

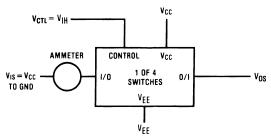


Figure 3. "ON" Channel Leakage Current

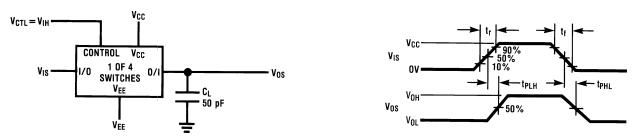


Figure 4. t_{PHL} , t_{PLH} Propagation Delay Time Signal Input to Signal Output

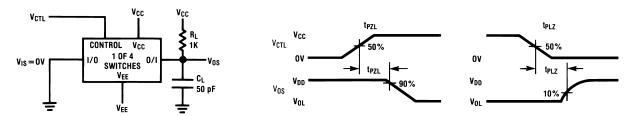


Figure 5. t_{PZL}, t_{PLZ} Propagation Delay Time Control to Signal Output

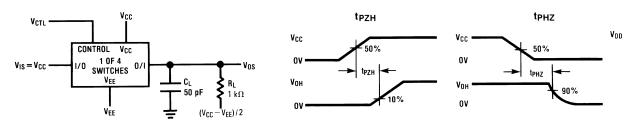


Figure 6. t_{PZH}, t_{PHZ} Propagation Delay Time Control to Signal Output

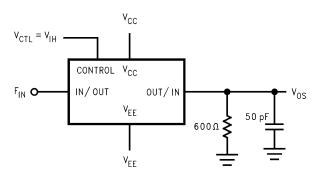


Figure 7. Frequency Response

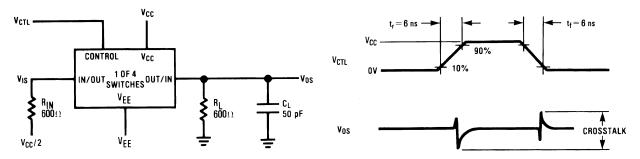


Figure 8. Crosstalk: Control Input to Signal Output

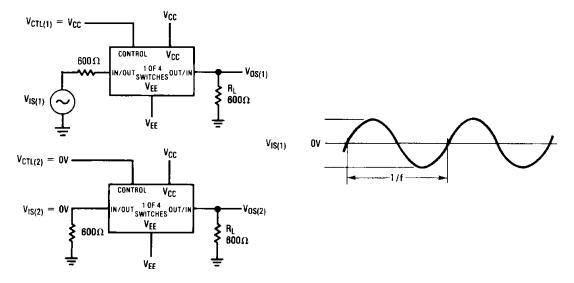


Figure 9. Crosstalk Between Any Two Switches

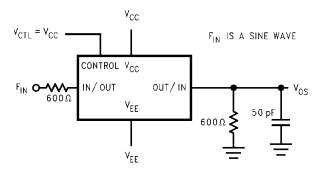


Figure 10. Switch OFF Signal Feedthrough Isolation

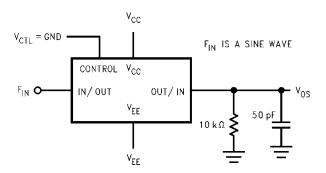
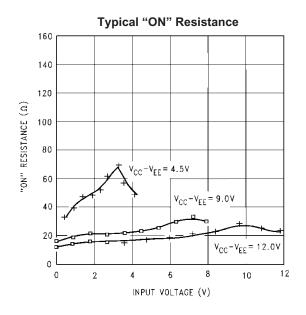
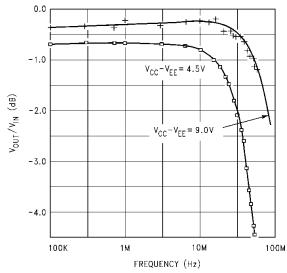
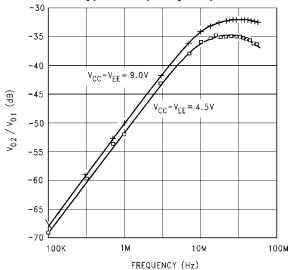
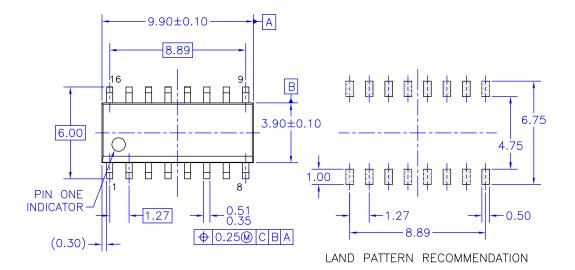
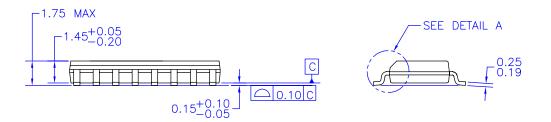




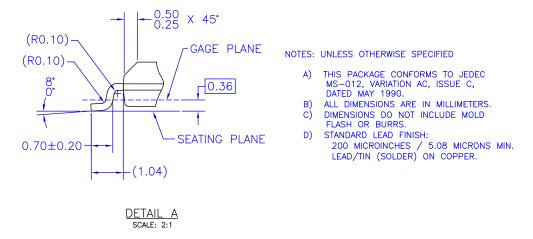
Figure 11. Sinewave Distortion


Typical Performance Characteristics

Typical Crosstalk Between Any Two Switches




Special Considerations


In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the analog switch input pins, the voltage drop across the switch must not exceed 0.6V (calculated from the ON resistance).

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

M16AREVK

Figure 12. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions (Continued)

Dimensions are in inches (millimeters) unless otherwise noted.

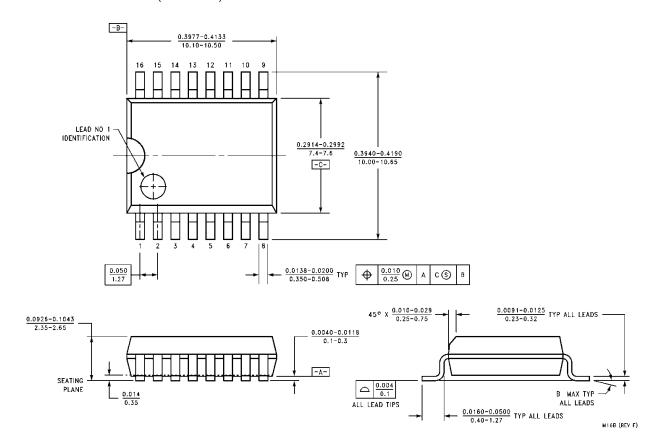


Figure 13. 16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M16B

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted. Α 5.00±0.10 4.55 5.90 4.45 7.35 В 6.4 0.65 4.4±0.1 3.2 O.2 CBA ALL LEAD TIPS 5.00 PIN #1 IDENT. LAND PATTERN RECOMMENDATION (F) 0.11-SEE DETAIL A ALL LEAD TIPS (0.90) 1.1 MAX ○ 0.1 C 0.09-0.20 -C-0.10±0.05 0.65 0.19 - 0.30 TOP AND BOTTOM **♦ 0.10** A B C C S GAGE PLANE NOTES: 0.25 0°-8°

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB,
- **B. DIMENSIONS ARE IN MILLIMETERS**
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
- D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1994
- E. DRAWING FILE NAME: MTC16REV4
- F. LAND PATTERN RECOMMENDATION PER IPC7351 ID# TSOP65P640X110-16N

MTC16rev4

Figure 14. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

0.6±0.1

DETAIL A

SEATING PLANE

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACFx® HiSeC™ Power-SPM™ TinyBuck™ Across the board. Around the world.™ PowerTrench® TinyLogic[®] i-Lo™ ActiveArray[™] ImpliedDisconnect™ Programmable Active Droop™ TINYOPTO™ Bottomless™ IntelliMAX™ **QFET** TinyPower™ QSTM TinyWire™ Build it Now™ ISOPLANAR™ CoolFET™ MICROCOUPLER™ QT Optoelectronics™ TruTranslation™ CorePLUS™ Quiet Series™ นSerDes™ MicroPak™ UHC® RapidConfigure™ $CROSSVOLT^{m}$ MICROWIRE™ CTL™ RapidConnect™ UniFET™ Motion-SPM™ Current Transfer Logic™ MSX™ ScalarPump™ **VCX**TM DOME™ MSXPro™ SMART START™ Wire™ E²CMOSTM SPM[®] OCX^{TM} $\mathsf{EcoSPARK}^{^{\circledR}}$ STEALTH™ OCXPro™ EnSigna™ OPTOLOGIC® SuperFET™ FACT Quiet Series™ OPTOPLANAR® SuperSOT™-3

FRFET® Power247® The Power Franchise®

GlobalOptoisolator™ PowerEdge™

GTO™ PowerSaver™ TinyBoost™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information Formative or In Design		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.				

Rev. I27