FAIRCHILD

SEMICONDUCTOR

74VHC4066 Quad Analog Switch

General Description

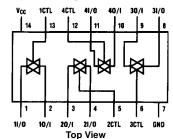
These devices are digitally controlled analog switches utilizing advanced silicon-gate CMOS technology. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and visa-versa. Also the 4066 switches contain linearization circuitry which lowers the "on" resistance and increases switch linearity. The 4066 devices allow control of up to 12V (peak) analog signals with digital control signals of the same range. Each switch has its own control input which disables each switch when low. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to $V_{\rm CC}$ and ground.

Features

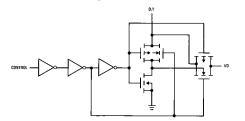
- Typical switch enable time: 15 ns
- Wide analog input voltage range: 0–12V
- Low "on" resistance: 30 typ. ('4066)
- \blacksquare Low quiescent current: 80 μA maximum (74VHC)

April 1994

Revised February 2005


- Matched switch characteristics
- Individual switch controls
- Pin and function compatible with the 74HC4066

Ordering Code:


Order Number	Package	Package Description
	Number	
74VHC4066M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC4066MX_NL (Note 1)	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC4066MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC4066MTCX_NL (Note 1)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC4066N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Note 1: "_NL" indicates Pb-Free package (per JEDEC S-STD-020B). Device available in Tape and Reel only.

Connection Diagram

Schematic Diagram

Truth Table

Input	Switch		
CTL	I/O–O/I		
L	"OFF"		
н	"ON"		

74VHC4066

(Note 3)

Absolute Maximum Ratings(Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	–0.5 to +15V	
DC Control Input Voltage (VIN)	–1.5 to V _{CC} + 1.5V	Su
DC Switch I/O Voltage (V _{IO})	V_{EE} – 0.5 to V_{CC} + 0.5V	D
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA	
DC Output Current, per pin (I _{OUT})	±25 mA	Op
DC V _{CC} or GND Current, per pin (I _{CC})	±50 mA	Inj
Storage Temperature Range (T _{STG})	-65°C to +150°C	
Power Dissipation (P _D) (Note 4)	600 mW	
S.O. Package only	500 mW	No
Lead Temperature (T _L)		age
(Soldering 10 seconds)	260°C	No
		No

	Min	Max	Units	
Supply Voltage (V _{CC})	2	12	V	
DC Input or Output Voltage	0	V_{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T_A)	-40	+85	°C	
Input Rise or Fall Times (t_r, t_f)				
$V_{CC} = 2.0V$		1000	ns	
$V_{CC} = 4.5V$		500	ns	
$V_{CC} = 9.0V$		400	ns	

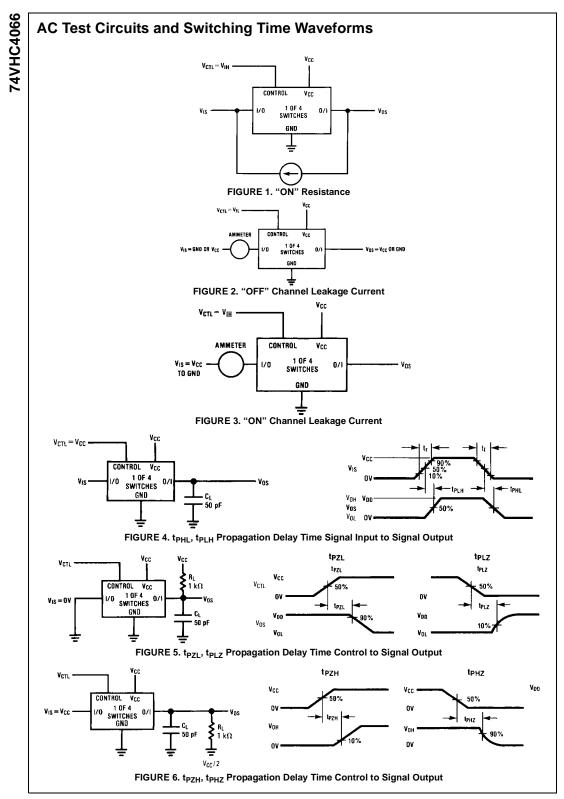
Note 2: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 3: Unless otherwise specified all voltages are referenced to ground. Note 4: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

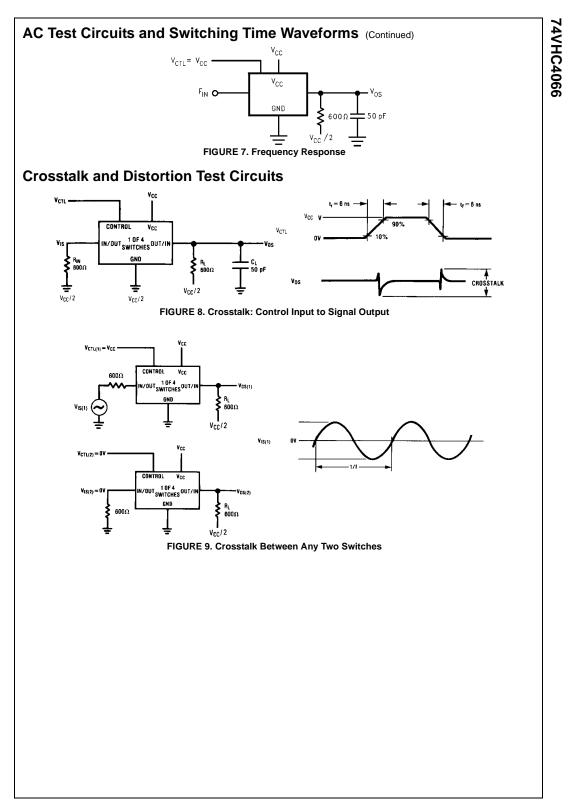
0500

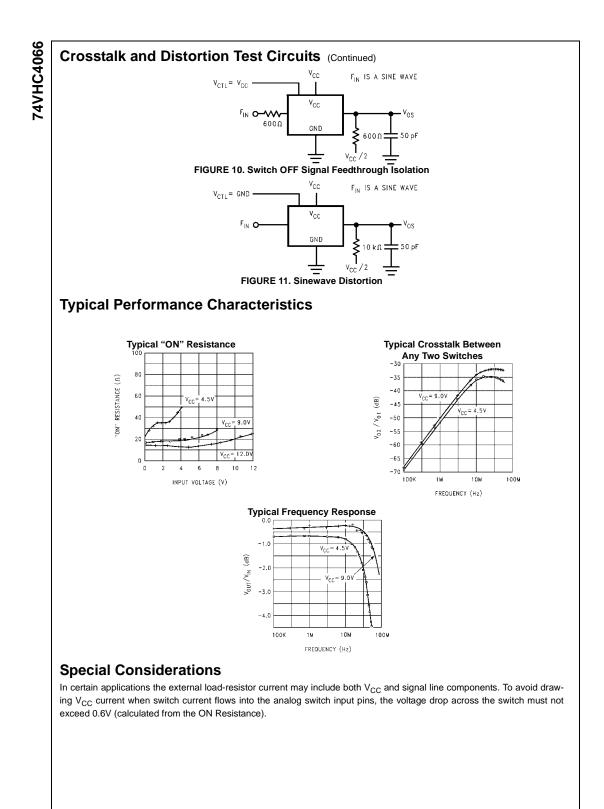
DC Electrical Characteristics (Note 5)

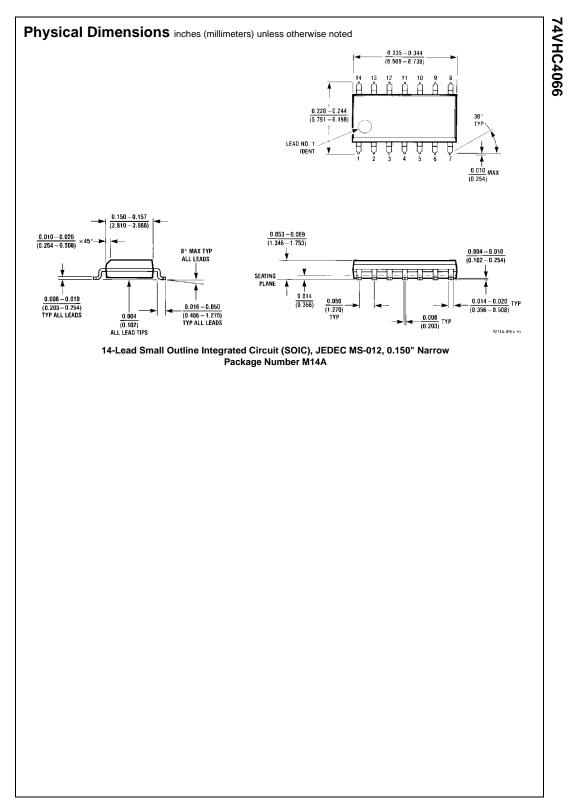
Symbol	Parameter	Conditions	V _{cc}	T _A =25℃		T _A =-40 to 85°C	Units
Cymbol	r urunieter	Conditions		Тур	Guaranteed Limits		
VIH	Minimum HIGH Level		2.0V		1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	V
			9.0V		6.3	5.3	V
			12.0V		8.4	8.4	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	V
			9.0V		2.7	2.7	V
			12.0V		3.6	3.6	V
R _{ON}	Maximum "ON" Resistance	$V_{CTL} = V_{IH}$, $I_S = 2.0 \text{ mA}$	4.5V	100	170	200	Ω
	See (Note 6)	$V_{IS} = V_{CC}$ to GND	9.0V	50	85	105	Ω
		(Figure 1)	12.0V	30	70	85	Ω
			2.0V	120	180	215	Ω
		$V_{CTL} = V_{IH}$, $I_S = 2.0 \text{ mA}$	4.5V	50	80	100	Ω
		$V_{IS} = V_{CC}$ or GND	9.0V	35	60	75	Ω
		(Figure 1)	12.0V	20	40	60	Ω
R _{ON}	Maximum "ON" Resistance	V _{CTL} = V _{IH}	4.5V	10	15	20	Ω
	Matching	$V_{IS} = V_{CC}$ to GND	9.0V	5	10	15	Ω
			12.0V	5	10	15	Ω
I _{IN}	Maximum Control	V _{IN} = V _{CC} or GND			±0.05	±0.5	μA
	Input Current	$V_{CC} = 2 - 6V$					
I _{IZ}	Maximum Switch "OFF"	$V_{OS} = V_{CC} \text{ or } GND$	6.0V	10	±60	±600	nA
	Leakage Current	$V_{IS} = GND \text{ or } V_{CC}$	9.0V	15	±80	±800	nA
		V _{CTL} = V _{IL} (<i>Figure 2</i>)	12.0V	20	±100	±1000	nA
I _{IZ}	Maximum Switch "ON"	V _{IS} = V _{CC} to GND	6.0V	10	±40	±150	nA
	Leakage Current	$V_{CTL} = V_{IH}$	9.0V	15	±50	±200	nA
		V _{OS} = OPEN (<i>Figure 3</i>)	12.0V	20	±60	±300	nA
Icc	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		1.0	10	μA
	Supply Current	I _{OUT} = 0 μA	9.0V		2.0	20	μA
			12.0V		4.0	40	μA

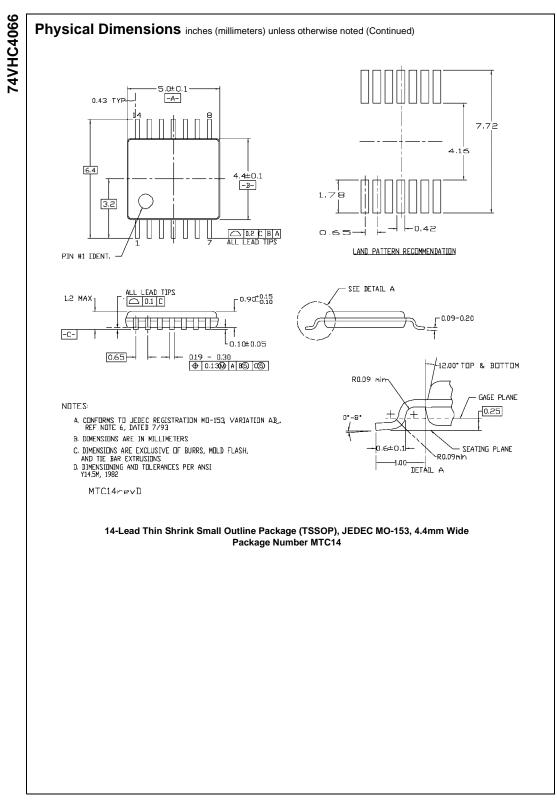

Note 5: For a power supply of 5V \pm 10% the worst case on resistance (R_{ON}) occurs for VHC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.

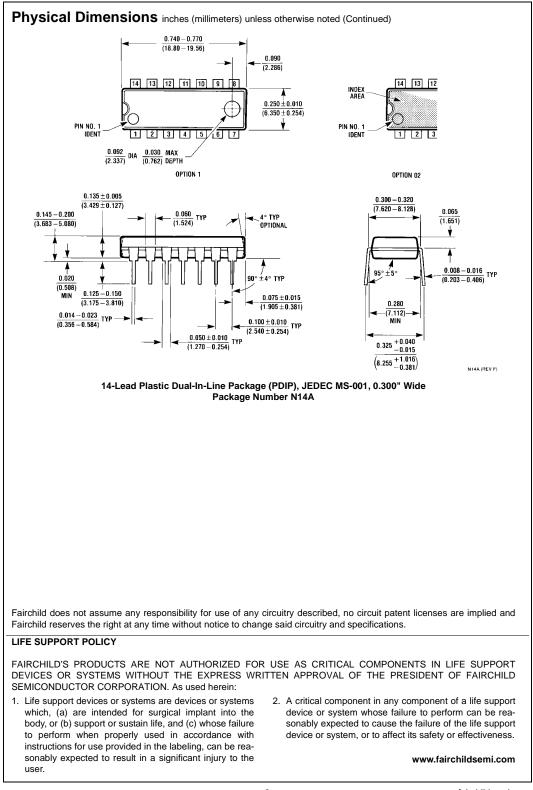
Note 6: At supply voltages (V_{CC} – GND) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.


Symbol	Parameter Maximum Propagation	L = 50 pF (unless otherwise specif	V _{CC} 3.3V	T _A =2	25°C	T _A =-40 to 85°C	
				Тур	Guara	nteed Limits	Units
				25	30	20	ns
	Delay Switch In to Out		4.5V	5	10	13	ns
			9.0V	4	8	10	ns
			12.0V	3	7	11	ns
t _{PZL} , t _{PZH}	Maximum Switch Turn	$R_L = 1 k\Omega$	3.3V	30	58	73	ns
	"ON" Delay		4.5V	12	20	25	ns
			9.0V	6	12	15	ns
			12.0V	5	10	13	ns
t _{PHZ} , t _{PLZ}	Maximum Switch Turn	$R_L = 1 k\Omega$	3.3V	60	100	125	ns
	"OFF" Delay		4.5V	25	36	45	ns
			9.0V	20	32	40	ns
			12.0V	15	30	38	
	Minimum Frequency	$R_L = 600\Omega$	4.5V	40			MHz
	Response (Figure 7)	$V_{IS} = 2 V_{PP}$ at $(V_{CC}/2)$	9.0V	100			MHz
	20 log (V _O /V _I) = -3 dB	(Note 7)(Note 8)					
	Crosstalk Between	$R_L = 600\Omega$, $F = 1 MHz$					
	any Two Switches	(Note 8)(Note 9)	4.5V	-52			dB
	(Figure 8)		9.0V	-50			dB
	Peak Control to Switch	$R_L = 600\Omega$, $F = 1 MHz$	4.5V	100			mV
	Feedthrough Noise	C _L = 50 pF	9.0V	250			mV
	(Figure 9)						
	Switch OFF Signal	$R_L = 600\Omega$, $F = 1 MHz$					
	Feedthrough	V _(CT) V _{IL}					
	Isolation	(Note 8)(Note 9)	4.5V	-42			dB
	(Figure 10)		9.0V	-44			dB
THD	Total Harmonic	$R_{L} = 10 \text{ k}\Omega, C_{L} = 50 \text{ pF},$				1 1	
	Distortion	F = 1 kHz					
	(Figure 11)	$V_{IS} = 4 V_{PP}$	4.5V	.013			%
		V _{IS} = 8 V _{PP}	9.0V	.008			%
CIN	Maximum Control			5	10	10	pF
	Input Capacitance						
C _{IN}	Maximum Switch			20		1 1	pF
	Input Capacitance						
C _{IN}	Maximum Feedthrough	V _{CTL} = GND		0.5		1 1	pF
	Capacitance						•
CPD	Power Dissipation			15		1	pF
	Capacitance						•


Note 8: V_{IS} is centered at $V_{CC}/2$.


Note 9: Adjust input for 0 dBm.




4

74VHC4066 Quad Analog Switch