26Ω series resistors in the outputs ■ t_{PD} (CLK to O_n) 4.1 ns max for 3.0V to 3.6V V_{CC} 5.8 ns max for 2.3V to 2.7V V_{CC} 9.8 ns max for 1.65V to 1.95V V_{CC} Power-off high impedance inputs and outputs Supports live insertion and withdrawal (Note 1) ■ Static Drive (I_{OH}/I_{OL}) ±12 mA @ 3.0V V_{CC} ±8 mA @ 2.3V V_{CC} ±3 mA @ 1.65V V_{CC} Uses patented noise/EMI reduction circuitry ■ Latch-up performance exceeds 300 mA ESD performance: Human body model > 2000V Machine model > 200V Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver Logic Symbol **Pin Descriptions** Pin Names Description OE Output Enable Input (Active LOW) I₀–I₁₉ Inputs O₀-O₁₉ Outputs CLK Clock Input REGE Register Enable Input

with 3.6V Tolerant Inputs/Outputs and 26 Ω Series Resistors in the Outputs **General Description**

Low Voltage 20-Bit Selectable Register/Buffer

The VCX162839 contains twenty non-inverting selectable buffered or registered paths. The device can be configured to operate in a registered, or flow through buffer mode by utilizing the register enable (REGE) and Clock (CLK) signals. The device operates in a 20-bit word wide mode. All outputs can be placed into 3-STATE through use of the OE pin. These devices are ideally suited for buffered or registered 168 pin and 200 pin SDRAM DIMM memory modules

The 74VCX162839 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V. The 74VCX162839 is also designed with 26Ω series resistors in the outputs. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

The 74VCX162839 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

■ Compatible with PC100 and PC133 DIMM module specifications

March 1998

Revised December 2000

- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs

Ordering Code:

Order Number	Package Number	Package Description
74VCX162839MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available in	Tape and Reel. Specify I	by appending suffix letter "X" to the ordering code.

© 2000 Fairchild Semiconductor Corporation DS500127

FAIRCHILD

SEMICONDUCTOR

74VCX162839

74VCX162839

Truth Table


	Inputs				
CLK	REGE	I _n	OE	0 _n	
\uparrow	Н	Н	L	н	
\uparrow	н	L	L	L	
х	L	н	L	н	
х	L	L	L	L	
х	Х	х	н	Z	

H = Logic HIGHL = Logic LOW X = Don't Care, but not floating

Z = High Impedance $\uparrow = LOW-to-HIGH Clock Transition$

Functional Description

The 74VCX162839 consists of twenty selectable noninverting buffers or registers with word wide modes. Mode functionality is selected through operation of the CLK and REGE pin as shown by the truth table. When REGE is held at a logic HIGH the device operates as a 20-bit register. Data is transferred from ${\rm I}_{\rm n}$ to ${\rm O}_{\rm n}$ on the rising edge of the CLK input. When the REGE pin is held at a logic LOW the device operates in a flow through mode and data propagates directly from the ${\rm I}_{\rm n}$ to the ${\rm O}_{\rm n}$ outputs. All outputs can be 3-stated by holding the $\overline{\text{OE}}$ pin at a logic HIGH.

www.fairchildsemi.com

Absolute Maximum Ra	tings(Note 2)	Recommended Operatin	g
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 4)	
DC Input Voltage (VI)	-0.5V to +4.6V	Power Supply	
Output Voltage (V _O)		Operating	1.65V to 3.6V
Outputs 3-STATE	-0.5V to +4.6V	Data Retention Only	1.2V to 3.6V
Outputs Active (Note 3)	–0.5V to V _{CC} + 0.5V	Input Voltage	-0.3V to +3.6V
DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA	Output Voltage (V _O)	
DC Output Diode Current (I _{OK})		Output in Active States	0V to V_{CC}
$V_{O} < 0V$	–50 mA	Output in "OFF" State	0V to 3.6V
$V_{O} > V_{CC}$	+50 mA	Output Current in I _{OH} /I _{OL}	
DC Output Source/Sink Current		$V_{CC} = 3.0V$ to 3.6V	±12 mA
(I _{OH} /I _{OL})	±50 mA	$V_{CC} = 2.3V$ to 2.7V	±8 mA
DC V _{CC} or GND Current per		V _{CC} = 1.65V to 2.3V	±3 mA
Supply Pin (I _{CC} or GND)	±100 mA	Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Storage Temperature Range (T _{STG})	-65°C to +150°C	Minimum Input Edge Rate ($\Delta t/\Delta V$)	
		V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V

74VCX162839

 $V_{IN} = 0.8V \ to \ 2.0V, \ V_{CC} = 3.0V \qquad 10 \ \text{ns/V}$ Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_{O} Absolute Maximum Rating must be observed.

Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics (2.7V $< V_{CC} \leq 3.6V)$

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.7 – 3.6	2.0		V
V _{IL}	LOW Level Input Voltage		2.7 – 3.6		0.8	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 – 3.6	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.7	2.2		v
		I _{OH} = -8 mA	3.0	2.4		v
		$I_{OH} = -12 \text{ mA}$	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7 – 3.6		0.2	
		I _{OL} = 6 mA	2.7		0.4	v
		I _{OL} = 8 mA	3.0		0.55	v
		I _{OL} = 12 mA	3.0		0.8	1
I _I	Input Leakage Current	$0V \le V_I \le 3.6V$	2.7 – 3.6		±5.0	μΑ
l _{oz}	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.7 – 3.6		±10	μA
		$V_I = V_{IH} \text{ or } V_{IL}$	2.7 - 3.0		10	μΑ
I _{OFF}	Power-OFF Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μΑ
Icc	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.7 - 3.6		20	μA
		$V_{CC} \leq (V_{I}, V_{O}) \leq 3.6V$ (Note 5)	2.7 - 3.0		±20	μΑ
ΔI _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 – 3.6		750	μΑ

Ο,
က
œ
N
Ö
~
×
65
2
2
4
\sim

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.6		V
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
V _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 – 2.7	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	2.3	2.0		v
		$I_{OH} = -6 \text{ mA}$	2.3	1.8		v
		$I_{OH} = -8 \text{ mA}$	2.3	1.7		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 2.7		0.2	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		I _{OL} = 8 mA	2.3		0.6	
I	Input Leakage Current	$0V \le V_I \le 3.6V$	2.3 – 2.7		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.3-2.7		±10	
		$V_I = V_{IH} \text{ or } V_{IL}$	2.3-2.7		±10	μA
OFF	Power-OFF Leakage Current	$0V \leq (V_I, V_O) \leq 3.6V$	0		10	μΑ
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND	22.27		20	
		$V_{CC} \le (V_I, V_O) \le 3.6V$ (Note 6)	2.3 – 2.7		±20	μA

Note 6: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65 - 2.3	0.65 x V _{CC}		
V _{IL}	LOW Level Input Voltage		1.65 - 2.3		$0.35 \times V_{CC}$	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 2.3	V _{CC} - 0.2		V
		$I_{OH} = -3 \text{ mA}$	1.65	1.25		v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 2.3		0.2	V
		I _{OL} = 3 mA	1.65		0.3	v
l	Input Leakage Current	$0V \le V_I \le 3.6V$	1.65 - 2.3		±5.0	μΑ
l _{oz}	3-STATE Output Leakage	$0V \le V_0 \le 3.6V$ $V_1 = V_{1H} \text{ or } V_{1I}$	1.65 - 2.3		±10	μA
I _{OFF}	Power-OFF Leakage Current	$V_{I} = V_{IH} O V_{IL}$ $OV \le (V_{I}, V_{O}) \le 3.6V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65 - 2.3		20	μA
		$V_{CC} \le (V_I, V_O) \le 3.6V \text{ (Note 7)}$	1.03 - 2.3		±20	μΑ

Note 7: Outputs disabled or 3-STATE only.

			T _A = -40	°C to +85°C,	C _L = 30 pF, F	$R_L = 500\Omega$		
Symbol	Parameter	V _{CC} = 3.	$V_{CC}=\textbf{3.3V}\pm\textbf{0.3V}$		$V_{CC}=\textbf{2.5V}\pm\textbf{0.2V}$		$V_{CC}=1.8V\pm0.15V$	
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		125		MHz
t _{PHL}	Propagation Delay In to On	0.8	3.5	1.0	4.9	1.5	9.8	ns
t _{PLH}	(REGE = 0)							
t _{PHL}	Propagation Delay CLK to On	0.8	4.1	1.0	5.8	1.5	9.8	ns
t _{PLH}	(REGE = 1)	0.8		1.0	0.0	1.0	0.0	110
t _{PHL} , t _{PLH}	Propagation Delay REGE to On	0.8	4.9	1.0	6.4	1.5	9.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.8	4.3	1.0	6.1	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.8	4.3	1.0	4.9	1.5	8.8	ns
t _S	Setup Time	1.0		1.0		2.5		ns
t _H	Hold Time	0.7		0.7		1.0		ns
t _W	Pulse Width	1.5		1.5		4.0		ns
t _{osHL}	Output to Output Skew		0.5		0.5		0.75	ns
t _{osLH}	(Note 9)							

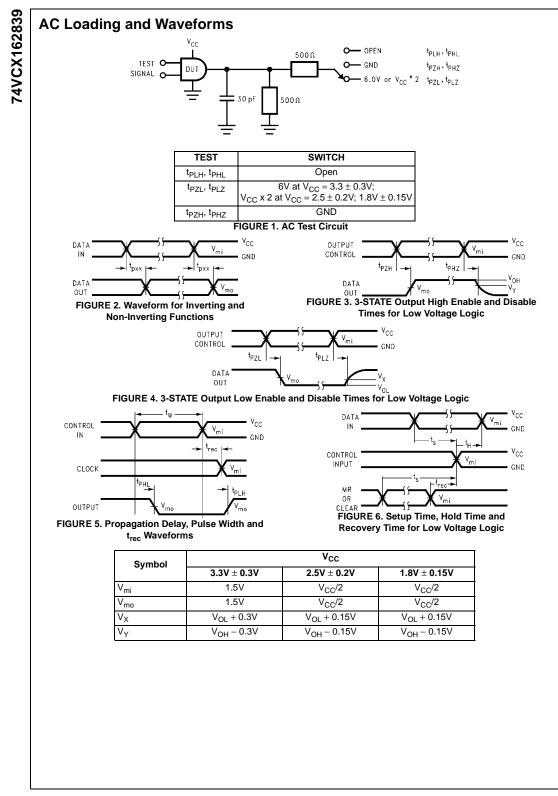
Note 8: For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

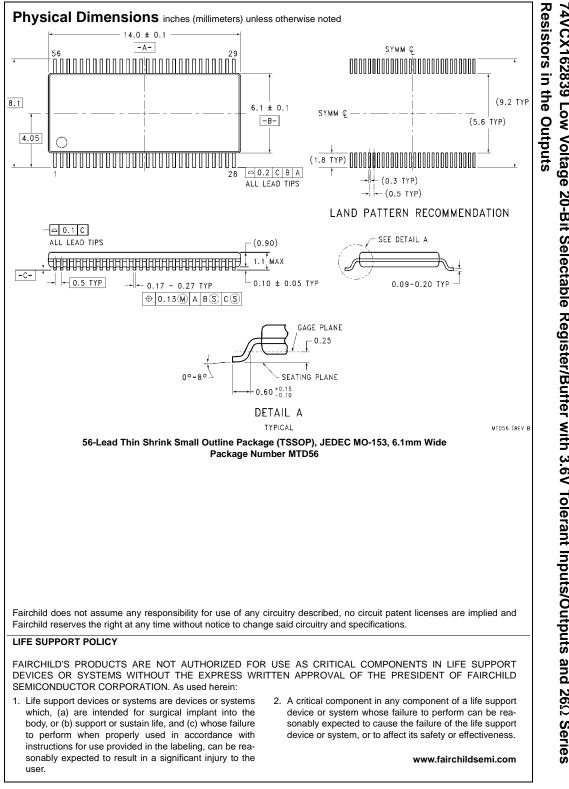
Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Extended AC Electrical Characteristics (Note 10)

		$T_A = -0^{\circ}C \text{ to } +85^{\circ}C, R_L =$	$\label{eq:T_A} \begin{split} \textbf{T}_{\textbf{A}} = -0^{\circ}\textbf{C} \text{ to } +85^{\circ}\textbf{C}, \ \textbf{R}_{L} = 500\Omega \ \textbf{V}_{\textbf{CC}} = \textbf{3.3V} \pm \textbf{0.3V} \\ \\ \textbf{C}_{L} = \textbf{50} \ \textbf{pF} \end{split}$		
Symbol	Parameter	C _L =			
		Min	Мах		
t _{PHL} , t _{PLH}	Propagation Delay I_n to O_n (REGE = 0)	1.0	3.8	ns	
t _{PHL} , t _{PLH}	Propagation Delay CLK to O _n (REGE = 1)	1.4	4.4	ns	
t _{PHL} , t _{PLH}	Propagation Delay REGE to On	1.0	5.2	ns	
t _{PZL} , t _{PZH}	Output Enable Time	1.0	4.6	ns	
t _{PLZ} , t _{PHZ}	Output Disable Time	1.0	4.6	ns	
t _S	Setup Time	1.0		ns	
t _H	Hold Time	0.7		ns	

Note 10: This parameter is guaranteed by characterization but not tested.


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC} (V)	T _A = +25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.15	
			2.5	0.25	V
			3.3	0.35	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.15	
			2.5	-0.25	V
			3.3	-0.35	
V _{онv}	Quiet Output Dynamic Valley V _{OH}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.55	
			2.5	2.05	V
			3.3	2.65	

Capacitance

Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
CIN	Input Capacitance	V_{CC} = 1.8V, 2.5V or 3.3V, V_I = 0V or V_{CC}	6	pF
C _{OUT}	Output Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF
C _{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz},$ $V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	20	pF

www.fairchildsemi.com

74VCX162839 Low Voltage 20-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series

www.fairchildsemi.com