74LVTH543 Low Voltage Octal Registered Transceiver with 3-STATE Outputs

General Description

FAIRCHILD

SEMICONDUCTOR

The LVTH543 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow.

The LVTH543 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

This octal registered transceiver is designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH543 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

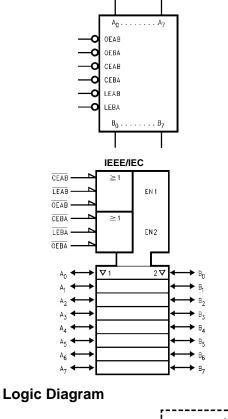
Features

- Input and output interface capability to systems at $5VV_{CC}$
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –32 mA/+64 mA
- Functionally compatible with the 74 series 543
- Latch-up performance exceeds 500 mA
- ESD performance: Human-body model > 2000V Machine model > 200V Charged-device model > 1000V

Ordering Code:

Order Number	Package Number	Package Description
74LVTH543WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74LVTH543MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Device also available	n Tape and Reel. Specify	by appending suffix letter "X" to the ordering code.

Connection Diagram


LEBA -		24	— v _{cc}
OEBA -	2	23	- CEBA
A ₀ —	3	22	— в _о
A ₁ —	4	21	— в ₁
A ₂ —	5	20	— в ₂
Α3 —	6	19	— В ₃
Α4 —	7	18	— В ₄
A ₅ —	8	17	— в ₅
A ₆ —	9	16	— в ₆
A7 -	10	15	— В ₇
CEAB -	11	14	- LEAB
GND —	12	13	- OEAB
			I

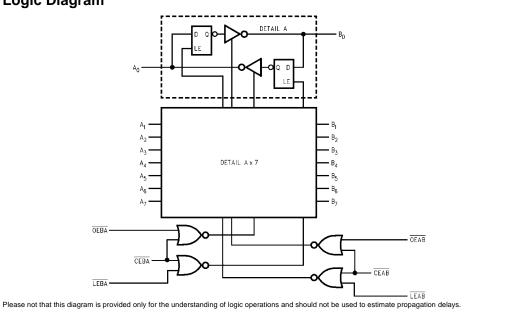
Pin Descriptions

Pin Names	Description
OEAB, OEBA	Output Enable Inputs
LEAB, LEBA	Latch Enable Inputs
CEAB, CEBA	Chip Enable Inputs
A ₀ -A ₇	Side A Inputs or
	3-STATE Outputs
B ₀ –B ₇	Side B Inputs or
	3-STATE Outputs

74LVTH543

Logic Symbols

Functional Description


The LVTH543 contains two sets of D-type latches, with separate input and output controls for each. For data flow from A to B, for example, the A to B Enable (CEAB) input must be LOW in order to enter data from the A Port or take data from the <u>B</u> Port as indicated in the Data I/O Control Table. With CEAB LOW, a low signal on (LEAB) input makes the A to B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB line puts the A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both LOW, the B output buffers are active and reflect the data present on the output of the A latches. Control of data flow from B to A is similar, but using the CEBA, LEBA and OEBA.

Data I/O Control Table

	Inputs		Latah Statua	Output
CEAB	LEAB	OEAB	Latch Status	Buffers
н	Х	х	Latched	High Z
х	н	х	Latched	—
L	L	х	Transparent	—
х	Х	н	—	High Z
L	Х	L	—	Driving

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

www.fairchildsemi.com

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 2)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{ОК}	DC Output Diode Current	-50	V _O < GND	mA
I _O	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA
		128	V _O > V _{CC} Output at LOW State	mA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
l _{он}	HIGH Level Output Current		-32	
OL	LOW Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: I_{O} Absolute Maximum Rating must be observed.

74I VTH543

I_{CCL}

I_{CCZ}

I_{CCZ}+

 ΔI_{CC}

Power Supply Current

Power Supply Current

Power Supply Current

Increase in Power Supply Current

Symbol	Bananatan		V _{CC}	T _A =-40°C to +85°C		Unite	o
Symbol	Parameter		(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7-3.6		0.8	v	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2		V	I _{OH} = -100 μA
			2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0		V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA
			2.7		0.5	V	I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5	V	I _{OL} = 32 mA
			3.0		0.55	V	I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μA	$V_{I} = 0.8V$
				-75		μA	$V_{l} = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 3)
	Current to Change State			-500		μA	(Note 4)
l _l	Input Current		3.6		10	μA	$V_{I} = 5.5V$
		Control Pins	3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μΑ	$V_I = 0V$
		Data Filis	5.0		1	μA	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0		±100	μA	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE		0–1.5V		±100	μA	V _O = 0.5V to 3.0V
	Output Current		0-1.5V		±100	μΑ	$V_I = GND \text{ or } V_{CC}$
l _{ozl}	3-STATE Output Leakage Curre	ent	3.6		-5	μA	V _O = 0.0V
I _{OZH}	3-STATE Output Leakage Curre	ent	3.6		5	μA	V _O = 3.6V
I _{OZH} +	3-STATE Output Leakage Curre	ent	3.6		10	μA	$V_{CC} < V_O \le 5.5V$
I _{CCH}	Power Supply Current		3.6		0.19	mA	Outputs HIGH

3.6

3.6

3.6

3.6

5

0.19

0.19

0.2

mΑ

mΑ

mA

mΑ

(Note 5) Note 3: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 4: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 5: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 6)

Symbol	Parameter	v _{cc}		T _A = 25°C			Conditions
Symbol	Falameter	(V)	Min	Тур	Max	Units	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 7)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 7)

A or B Port Outputs LOW

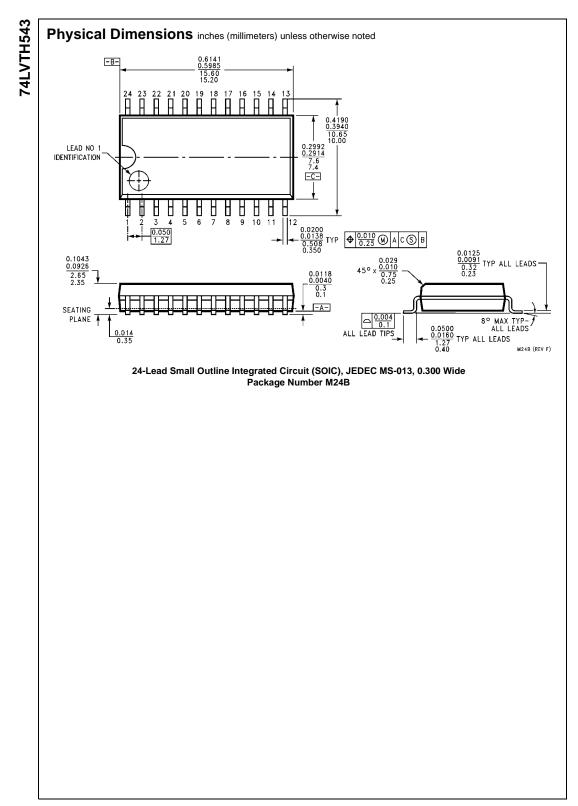
One Input at V_{CC} – 0.6V

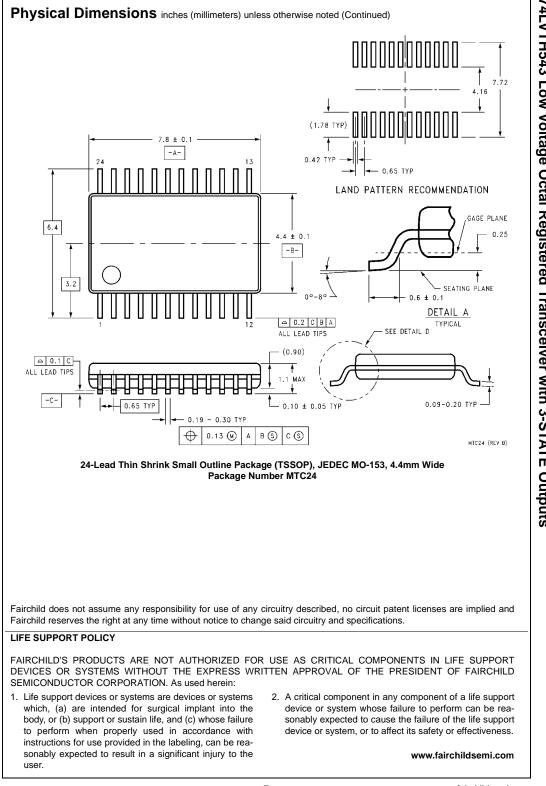
Other Inputs at V_{CC} or GND

Outputs Disabled

 $V_{CC} \le V_O \le 5.5V$

Outputs Disabled


Note 6: Characterized in SOIC package. Guaranteed parameter, but not tested.


Note 7: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$					
			$C_L = 50 \text{ pF}, R_L = 500 \Omega$					
Symbol	Parameter		V _{CC} = 3.	$3V \pm 0.3V$	$V_{CC} = 2.7V$		Units	
			Min	Max	Min	Max	ix	
t _{PLH}	Propagation Delay		1.3	4.4	1.3	4.8		
t _{PHL}	Data to Outputs		1.3	4.6	1.3	5.2	ns	
t _{PLH}	Propagation Delay		1.3	5.4	1.3	6.4		
t _{PHL}	LE to A or B		1.3	5.8	1.3	6.6	ns	
t _{PZH}	Output Enable Time		1.1	5.5	1.1	6.3	ns	
t _{PZL}	OE to A or B		1.1	6.1	1.1	7.2	113	
t _{PHZ}	Output Disable Time		2.0	5.7	2.0	5.9	ns	
t _{PLZ}	OE to A or B	2.0	5.3	2.0	5.9			
t _{PZH}	Output Enable Time	1.3	5.9	1.3	6.8	ns		
t _{PZL}	CE to A or B		1.3	6.2	1.3	7.4		
t _{PHZ}	Output Disable Time	2.1	5.8	2.1	6.1	ns		
t _{PLZ}	CE to A or B		1.6	5.4	1.6	5.9		
t _W	Pulse Duration	LE LOW	3.3		3.3		ns	
t _S	Setup Time A or I	B before LE, Data HIGH	0.4		0.4			
	A or	B before LE, Data LOW	1.0		1.5		ns	
	A or E	B before CE, Data HIGH	0.2		0.2			
	A or	B before CE, Data LOW	0.7		1.2			
t _H	Hold Time A or	B before LE, Data HIGH	1.5		0.6			
	A or	B before LE, Data LOW	1.3		1.5		ns	
	A or E	B before CE, Data HIGH	1.6		0.5		115	
	A or	B before CE, Data LOW	1.4		1.6			
t _{OSHL}	Output to Output Skew (Note 8)			1.0		1.0	ns	
t _{OSLH}				1.0		1.0	110	
	n applies to any outputs switching in the same direction (Note 9)	Condi			Typical		Units	
C _{IN}	Input Capacitance	$V_{CC} = 0V, V_I = 0V \text{ or } V_C$			4 1		pF	
	Input/Output Capacitance	$V_{CC} = 3.0V, V_O = 0V \text{ or}$			8		pF	
C _{I/O}								

www.fairchildsemi.com

74LVTH543

www.fairchildsemi.com