

D-type inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are enabled. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram


Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )
DC Input Diode Current ( $1_{\mathrm{I}_{K}}$ )
$v_{1}=-0.5 \mathrm{v}$
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ( $\mathrm{V}_{\mathrm{l}}$ )
DC Output Diode Current (lok)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Voltage ( $\mathrm{V}_{\mathrm{O}}$ )
DC Output Source
or Sink Current (IO)
DC V ${ }_{C C}$ or Ground
Current (ICC or $I_{G N D}$ )
Storage Temperature ( $\mathrm{T}_{\mathrm{STG}}$ )
DC Latch-Up Source or
Sink Current $\pm 300 \mathrm{~mA}$

## Recommended Operating Conditions (Note 2)

| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2.0 V to 3.6 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{l}}\right)$ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ |  |
| $\mathrm{V}_{\mathrm{IN}}$ from 0.8 V to 2.0 V |  |
| $\mathrm{~V}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ | $125 \mathrm{mV} / \mathrm{ns}$ |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

## DC Electrical Characteristics

| Symbol | Parameter | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ | Guaranteed Limits |  |  |  |
| $\overline{\mathrm{V}_{\mathrm{IH}}}$ | Minimum High Level Input Voltage | 3.0 | 1.5 | 2.0 | 2.0 | v | $\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {IL }}$ | Maximum Low Level Input Voltage | 3.0 | 1.5 | 0.8 | 0.8 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$ |
| $\overline{\mathrm{V}} \mathrm{OH}$ | Minimum High Level Output Voltage | 3.0 | 2.99 | 2.9 | 2.9 | V | IOUT $=-50 \mu \mathrm{~A}$ |
|  |  | 3.0 |  | 2.58 | 2.48 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\text {OL }}$ | Maximum Low Level Output Voltage | 3.0 | 0.002 | 0.1 | 0.1 | V | $\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$ |
|  |  | 3.0 |  | 0.36 | 0.44 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\mathrm{N}}$ | Maximum Input Leakage Current | 3.6 |  | $\pm 0.1$ | $\pm 1.0$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}, \mathrm{GND}$ |
| IoLD | Minimum Dynamic Output Current (Note 4) | 3.6 |  |  | 36 | mA | $\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}_{\text {Max }}($ Note 5) |
| TOHD |  | 3.6 |  |  | -25 | mA | $\mathrm{V}_{\mathrm{OHD}}=2.0 \mathrm{~V} \mathrm{~V}_{\text {Min }}$ (Note 5) |
| $\mathrm{I}_{\text {CC }}$ | Maximum Quiescent Supply Current | 3.6 |  | 4.0 | 40.0 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \\ & \hline \end{aligned}$ |
| $\mathrm{l}_{\mathrm{Oz}}$ | 3-STATE <br> Leakage Current | 3.6 |  | $\pm 0.25$ | $\pm 2.5$ | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\overline{\mathrm{OE}})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$ |
| $\mathrm{V}_{\text {OLP }}$ | Quiet Output Maximum Dynamic $\mathrm{V}_{\mathrm{OL}}$ | 3.3 | 0.4 | 0.8 |  | V | (Note 6)(Note 7) |
| $\mathrm{V}_{\text {OLV }}$ | Quiet Output Minimum Dynamic $\mathrm{V}_{\mathrm{OL}}$ | 3.3 | -0.4 | -0.8 |  | V | (Note 6)(Note 7) |
| $\mathrm{V}_{\text {IHD }}$ | Maximum High Level Dynamic Input Voltage | 3.3 | 1.6 | 2.0 |  | V | (Note 6)(Note 8) |
| $\mathrm{V}_{\text {ILD }}$ | Maximum Low Level Dynamic Input Voltage | 3.3 | 1.6 | 0.8 |  | V | (Note 6)(Note 8) |
| Note 3: All outputs loaded; thresholds on input associated with output under test. <br> Note 4: Maximum test duration 2.0 ms , one output loaded at a time. <br> Note 5: Incident wave switching on transmission lines with impedances as low as $75 \Omega$ for commercial temperature range is guaranteed for. <br> Note 6: Worst case package. <br> Note 7: Max number of outputs defined as ( n ). Data inputs are driven 0 V to 3.3 V ; one output at GND. <br> Note 8: Max number of Data Inputs ( n ) switching. ( $\mathrm{n}-1$ ) inputs switching 0 V to 3.3V. Input-under-test switching: 3.3V to threshold ( $\mathrm{V}_{\text {ILD }}$ ), 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$. |  |  |  |  |  |  |  |


| Symbol | Parameter | $\mathrm{V}_{\mathrm{Cc}}$ <br> (V) | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max |  |
| $t_{\text {PHL }}$ <br> $\mathrm{t}_{\mathrm{PLH}}$ | Propagation Delay $D_{n}$ to $O_{n}$ | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{gathered} 10.2 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 14.8 \\ & 10.5 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 16.0 \\ & 11.0 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay LE to $\mathrm{O}_{\mathrm{n}}$ | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{gathered} 10.2 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 16.9 \\ & 12.0 \end{aligned}$ | $\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & \hline 18.0 \\ & 12.5 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$ | Output Enable Time | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$ | $\begin{gathered} 10.2 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 18.3 \\ & 13.0 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 19.0 \\ & 13.5 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$ | Output Disable Time | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{gathered} \hline 10.8 \\ 9.0 \end{gathered}$ | $\begin{aligned} & 20.4 \\ & 14.5 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 21.0 \\ & 15.0 \end{aligned}$ | ns |
| toshl <br> ${ }^{\mathrm{t}} \mathrm{OSLH}$ | Output to Output Skew (Note 9) $D_{n} \text { to } O_{n}$ | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ |  | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ |  | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | ns | specification applies to any outputs switching in the same direction, either HIGH-to-LOW ( $\mathrm{t}_{\mathrm{OSHL}}$ ) or LOW-to-HIGH ( $\mathrm{t}_{\mathrm{OSLH}}$ ). Parameter guaranteed by design.

## AC Operating Requirements

| Symbol | Parameter | $V_{C C}$ <br> (V) | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$ |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ |  | eed Minimum |  |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time, HIGH or LOW $D_{n}$ to LE | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 4.0 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$ | ns |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time, HIGH or LOW $\mathrm{D}_{\mathrm{n}}$ to LE | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$ | ns |
| $\mathrm{t}_{\mathrm{W}}$ | LE Pulse Width, HIGH | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$ | ns |

## Capacitance

| Symbol | Parameter | Typ | Units |  |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance | 4.5 | pF | $\mathrm{V}_{\mathrm{CC}}=$ Open |
| $\mathrm{C}_{\mathrm{PD}}$ (Note 10) | Power Dissipation Capacitance | 37 | pF | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |

Note 10: $\mathrm{C}_{\mathrm{PD}}$ is measured at 10 MHz .
Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
Package Number M20B


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide Package Number MQA20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
